Blogia

vane18502

ENSAYO

ENSAYO

 Según lo visto en clase nosotros aprendimos  a diferenciar los tipos de energía y con una de esta realizamos un experimento en grupo.

La energía  es  la energía desde el punto de vista tecnológico, es un recurso natural primario o derivado, que permite realizar trabajo o servir de subsidiario a actividades económicas independientes de la producción de energía. Como todas las formas de energía una vez convertidas en la forma apropiada son básicamente equivalentes, toda la producción de energía en sus diversas formas puede ser medida en las mismas unidades.

Vimos las partes del computador internas como externas aprendimos sobre la memoria ram y el disco duro, como funcionan en la torre que es la cpu.

También en lo que me puedo acordar hicimos un ensayo sobre el calentamiento global y las consecuencias tecnologías en este, también trabajamos el hipervínculo con una empresa que creamos y desarrollamos.

Vimos :

 

Cosecuencias tecnologicas en el medio ambiente

tipos energia

Procesos de texto

Eempresa

Hipervinculo

Entrevista

 

Procesadores de texto

Desarrollo Tecnologico

Consulta practica

Consulta practica 

1. consultar las partes internas de la computadora y función, graficar tu respuesta

Tarjeta madre

Este es el componente principal de una PC, es quien integra a todos los demás componentes. Mediante ella, todos los componentes interactúan y se comunican para realizar procesos. Para decidir que tarjeta madre debemos elegir de acuerdo a nuestras necesidades, debemos de tomar en cuenta los siguientes aspectos:

 

Disco duro

 

Los discos duros se presentan recubiertos de una capa magnética delgada, habitualmente de óxido de hierro, y se dividen en unos círculos concéntricos cilindros (coincidentes con las pistas de los disquetes), que empiezan en la parte exterior del disco (primer cilindro) y terminan en la parte interior (último).

 

Asimismo estos cilindros se dividen en sectores, cuyo número esta determinado por el tipo de disco y su formato, siendo todos ellos de un tamaño fijo en cualquier disco.

 

Cilindros como sectores se identifican con una serie de números que se les asignan, empezando por el 1, pues el numero 0 de cada cilindro se reserva para propósitos de identificación mas que para almacenamiento de datos.

 

Estos, escritos/leídos en el disco, deben ajustarse al tamaño fijado del almacenamiento de los sectores. Habitualmente, los sistemas de disco duro contienen más de una unidad en su interior, por lo que el número de caras puede ser más de 2. Estas se identifican con un número, siendo el 0 para la primera.

 

En general su organización es igual a los disquetes. La capacidad del disco resulta de multiplicar el número de caras por el de pistas por cara y por el de sectores por pista, al total por el número de bytes por sector.Para escribir, la cabeza se sitúa sobre la celda a grabar y se hace pasar por ella un pulso de corriente, lo cual crea un campo magnético en la superficie. Dependiendo del sentido de la corriente, así será la polaridad de la celda. ara leer, se mide la corriente inducida por el campo magnético de la celda.

 

Es decir que al pasar sobre una zona detectará un campo magnético que según se encuentre magnetizada en un sentido u otro, indicará si en esa posición hay almacenado un 0 o un 1. En el caso de la escritura el proceso es el inverso, la cabeza recibe una corriente que provoca un campo magnético, el cual pone la posición sobre la que se encuentre la cabeza en 0 o en 1 dependiendo del valor del campo magnético provocado por dicha corriente.

 

Memoria RAM  

 

La memoria principal o RAM, abreviatura del inglés Randon Access Memory, es el dispositivo donde se almacenan temporalmente tanto los datos como los programas que la CPU está procesando o va a procesar en un determinado momento. Por su función, es una amiga inseparable del microprocesador, con el cual se comunica a través de los buses de datos. Por ejemplo, cuando la CPU tiene que ejecutar un programa, primero lo coloca en la memoria y recién después lo empieza a ejecutar. lo mismo ocurre cuando necesita procesar una serie de datos; antes de poder procesarlos los tiene que llevar a la memoria principal. Esta clase de memoria es volátil, es decir que, cuando se corta la energía eléctrica, se borra toda la información que estuviera almacenada en ella. por su función, la cantidad de memoria RAM de que disponga una computadora es una factor muy importante; hay programas y juegos que requieren una gran cantidad de memoria para poder usarlos. otros andarán más rápido si el sistema cuenta con más memoria RAM.

 

La memoria Caché

 

Dentro de la memoria RAM existe una clase de memoria denominada Memoria Caché que tiene la característica de ser más rápida que las otras, permitiendo que el intercambio de información entre el procesador y la memoria principal sea a mayor velocidad.

 

Memoria de sólo lectura o ROM

 

Su nombre vienen del inglés Read Only Memory que significa Memoria de Solo Lectura ya que la información que contiene puede ser leída pero no modificada. En ella se encuentra toda la información que el sistema necesita para poder funcionar correctamente ya que los fabricantes guardan allí las instrucciones de arranque y el funcionamiento coordinado de la computadora. no son volátiles, pero se pueden deteriorar a causa de campos magnéticos demasiados potentes. Al encender nuestra computadora automáticamente comienza a funcionar la memoria ROM. por supuesto, aunque se apague, esta memoria no se borra. El BIOS de una PC (Basic Input Operative System) es una memoria ROM, pero con la facultad de configurarse según las características particulares de cada máquina. esta configuración se guarda en la zona de memoria RAM que posee este BIOS y se mantiene sin borrar cuando se apaga la PC gracias a una pila que hay en la placa principal. Cuando la pila se agota se borra la configuración provocando, en algunos equipos, que la máquina no arranque.



Unidad central de proceso o CPU

(conocida por sus siglas en inglés, CPU), circuito microscópico que interpreta y ejecuta instrucciones. La CPU se ocupa del control y el proceso de datos en las computadoras. Generalmente, la CPU es un microprocesador fabricado en un chip, un único trozo de silicio que contiene millones de componentes electrónicos. El microprocesador de la CPU está formado por una unidad aritmético-lógica que realiza cálculos y comparaciones, y toma decisiones lógicas (determina si una afirmación es cierta o falsa mediante las reglas del álgebra de Boole); por una serie de registros donde se almacena información temporalmente, y por una unidad de control que interpreta y ejecuta las instrucciones. Para aceptar órdenes del usuario, acceder a los datos y presentar los resultados, la CPU se comunica a través de un conjunto de circuitos o conexiones llamado bus. El bus conecta la CPU a los dispositivos de almacenamiento (por ejemplo, un disco duro), los dispositivos de entrada (por ejemplo, un teclado o un mouse) y los dispositivos de salida (por ejemplo, un monitor o una impresora).



Disquete

 

Un disco flexible o disquete (en lengua inglesa Floppy disk o diskette) es un medio o soporte de almacenamiento de datos formado por una pieza circular de material magnético, fina y flexible (de ahí su denominación) encerrada en una cubierta de plástico cuadrada o rectangular.
Los disquetes se leen y se escriben mediante un dispositivo llamado disquetera (o FDD, del inglés Floppy Disk Drive). Es un disco más pequeño que el CD, tanto en tamaño externo como en capacidad, que está encerrado en una funda de pasta que lo protege (como se ha dicho anteriormente). 

2. que es c.p.u

¿ Que es UCP o CPU ?

Unidad central de proceso o UCP (conocida por sus siglas en inglés, CPU), circuito microscópico que interpreta y ejecuta instrucciones. La CPU se ocupa del control y el proceso de datos en las computadoras. Generalmente, la CPU es un microprocesador fabricado en un chip, un único trozo de silicio que contiene millones de componentes electrónicos. El microprocesador de la CPU está formado por una unidad aritmético-lógica que realiza cálculos y comparaciones, y toma decisiones lógicas (determina si una afirmación es cierta o falsa mediante las reglas del álgebra de Boole); por una serie de registros donde se almacena información temporalmente, y por una unidad de control que interpreta y ejecuta las instrucciones. Para aceptar órdenes del usuario, acceder a los datos y presentar los resultados, la CPU se comunica a través de un conjunto de circuitos o conexiones llamado bus. El bus conecta la CPU a los dispositivos de almacenamiento (por ejemplo, un disco duro), los dispositivos de entrada (por ejemplo, un teclado o un mouse) y los dispositivos de salida (por ejemplo, un monitor o una impresora).

Funcionamiento de la CPU

Cuando se ejecuta un programa, el registro de la CPU, llamado contador de programa, lleva la cuenta de la siguiente instrucción, para garantizar que las instrucciones se ejecuten en la secuencia adecuada. La unidad de control de la CPU coordina y temporiza las funciones de la CPU, tras lo cual recupera la siguiente instrucción desde la memoria. En una secuencia típica, la CPU localiza la instrucción en el dispositivo de almacenamiento correspondiente. La instrucción viaja por el bus desde la memoria hasta la CPU, donde se almacena en el registro de instrucción. Entretanto, el contador de programa se incrementa en uno para prepararse para la siguiente instrucción. A continuación, la instrucción actual es analizada por un descodificador, que determina lo que hará la instrucción. Cualquier dato requerido por la instrucción es recuperado desde el dispositivo de almacenamiento correspondiente y se almacena en el registro de datos de la CPU. A continuación, la CPU ejecuta la instrucción, y los resultados se almacenan en otro registro o se copian en una dirección de memoria determinada.

 

3. que son dispositivos de entrega y salida en una computadora 

  • DISPOSITIVOS:

Los dispositivos son regímenes definibles, con sus variaciones y transformaciones. Presentan líneas de fuerza que atraviesan umbrales en funciónde los cuales son estéticos, científicos, políticos, etc. Cuando la fuerza en un dispositivo en lugar de entrar en relación lineal con otra fuerza, se vuelve sobre sí misma y se afecta, no se trata de saber ni de poder, sino de un proceso de individuación relativo a gruposo personas que se sustrae a las relaciones de fuerzas establecidas como saberes constituidos.

  • LOS DISPOSITIVOS DE ENTRADA/SALIDA:

Son aquellos que permiten la comunicaciónentre la computadora y el usuario.

  • DISPOSITIVOS DE ENTRADA:

Son aquellos que sirven para introducir datos a la computadora para su proceso. Los datos se leen de los dispositivos de entrada y se almacenan en la memoria central o interna. Los dispositivos de entrada convierten la información en señales eléctricas que se almacenan en la memoria central.

Los dispositivos de entrada típicos son los teclados, otros son: lápices ópticos, palancas de mando (joystick), CD-ROM, discos compactos (CD), etc. Hoy en día es muy frecuente que el usuario utilice un dispositivo de entrada llamado ratón que mueve un puntero electrónico sobre una pantalla que facilita la interacción usuario-máquina.

  • DISPOSITIVOS DE SALIDA:

Son los que permiten representar los resultados (salida) del proceso de datos. El dispositivo de salida típico es la pantalla o monitor. Otros dispositivos de salida son: impresoras (imprimen resultados en papel), trazadores gráficos (plotters), bocinas, entre otros...

TIPOS DE DISPOSITIVOS:

ENTRADA:

  1. Mouse:

La función principal del ratón es transmitir los movimientos de nuestra mano sobre una superficie plana hacia el ordenador. Allí, el software denominado driver se encarga realmente de transformarlo a un movimientodel puntero por la pantalla dependiendo de varios parámetros.

En el momento de activar el ratón, se asocia su posición con la del cursor en la pantalla. Si desplazamos sobre una superficie el ratón, el cursor seguirá dichos movimientos. Es casi imprescindible en aplicaciones dirigidas por menús o entornos gráficos, como por ejemplo Windows, ya que con un pulsador adicional en cualquier instante se pueden obtener en programalas coordenadas (x, y) donde se encuentra el cursor en la pantalla, seleccionando de esta forma una de las opciones de un menú.

Hay cuatro formas de realizar la transformación y por tanto cuatro tipos de ratones:

  • Mecánicos: Son los más utilizados por su sencillez y bajo coste. Se basan en una bola de silicona que gira en la parte inferior del ratón a medida que desplazábamos éste. Dicha bola hace contacto con dos rodillos, uno perpendicular al ratón y otro transversal, de forma que uno recoge los movimientos de la bola en sentido horizontal y el otro en sentido vertical

En cada extremo de los ejes donde están situados los rodillos, existe una pequeña rueda conocida como "codificador", que gira en tornoa cada rodillo. Estas ruedas poseen en su superficie, y a modo de radios, una serie de contactos de metal, que a medida que gira la rueda toca con dos pequeñas barras fijas conectadas al circuito integrado en el ratón.

Cada vez que se produce contacto entre el material conductor de la rueda y las barras, se origina una señal eléctrica. Así, el número de se señales indicará la cantidad de puntos que han pasado éstas, lo que implica que, a mayor número de señales, mayor distancia habrá recorrido el ratón. Tras convertir el movimiento en señales eléctricas, se enviaban al software del ordenador por medio del cable.

 

 

Figura. Bola y zonas de contacto con los rodillos

Los botones son simples interruptores. Debajo de cada uno de ellos se encuentra un microinterruptor que en estado de "reposo" interrumpe un pequeño circuito. En cuanto se ejerce una ligera presiónsobre estos, se activa el circuito, dejando pasar una señal eléctrica que será única en caso de que sólo se haga "clic" con el botón, o continua en caso de dejarlo pulsado.

Por último las señales se dan cita en el pequeño chip que gobierna el ratón, y son enviadas al ordenador a través del cable con los une. Allí el controlador del ratón decidirá, en función del desplazamiento vertical y horizontal detectado, el movimiento final que llevará el cursor. También será capaz de aumentar o disminuir ese movimiento, dependiendo de factores como la resolución que se le haya especificado al ratón.

 

Figura Esquema general de un ratón mecánico.

  • Los ratones opto-mecánicos trabajan según el mismo principio que los mecánicos, pero aquí los cilindros están conectados a codificadores ópticos que emplean pulsos luminosos al ordenador, en lugar de señales eléctricas. El modo de capturar el movimiento es distinto. Los tradicionales rodillos que giran una rueda radiada ahora pueden girar una rueda ranurada, de forma que un haz de luzlas atraviesa. De esta forma, el corte intermitente del haz de luz por la rueda es recogido en el otro lado por una célula fotoeléctrica que decide hacia donde gira el ratón y a que velocidad

 

Figura. Codificadores del ratón.

  • Los ratones de ruedas sustituyen la bola giratoria por unas ruedas de material plástico, perpendiculares entre sí, dirigiendo así a los codificadores directamente.
  • Los ratones ópticos carecen de bola y rodillos, y poseen unos foto-sensoreso sensores ópticos que detectan los cambios en los patrones de la superficie por la que se mueve el ratón. Antiguamente, estos ratones necesitaban una alfombrilla especial, pero actualmente no. Microsoft ha denominado a este sistemaIntelliEye en su ratón IntelliMouse y es capaz de explorar el escritorio 1500 veces por segundo, sobre multitud de superficies distintas como maderaplástico o tela. La ventaja de estos ratones estriba en su precisión y en la carencia de partes móviles, aunque son lógicamente algo más caros que el resto.

Una característica a tener en cuenta será la resolución, o sensibilidad mínima del sistema de seguimiento: en el momento en que el ratón detecte una variación en su posición, enviará las señales correspondientes al ordenador. La resolución se expresa en puntos por pulgada (ppp). Un ratón de 200 ppp podrá detectar cambios en la posición tan pequeños como 1/200 de pulgada, y así, por cada pulgada que se mueva el ratón, el cursor se desplazará 200 píxeles en la pantalla. El problema es que la relación entre la sensibilidad del movimiento y el movimiento en pantalla es de 1:1 (un desplazamiento equivalente a la sensibilidad mínima provoca un desplazamiento de un píxel en la pantalla); como consecuencia, cuanto mayor sea la resolución del monitor, mayor será el desplazamiento que habrá que imprimir al ratón para conseguir un desplazamiento equivalente en pantalla. Para solucionar este problema los fabricantes desarrollaron el seguimiento dinámico, que permite variar la relación anterior a 1: N, donde N > 1.

Una de las cosas que está cambiando es el medio de transmisión de los datos desde el ratón al ordenador. Se intenta acabar el cable que siempre conduce la información debido a las dificultades que añadía al movimiento. En la actualidad estos están siendo sustituidos por sistemas de infrarrojos o por ondas de radio(como incorpora el Cordless MouseMan Wheel de Logitech). Esta última técnica es mejor, pues los objetos de la mesa no interfieren la comunicación. Los dos botones o interruptores tradicionales han dejado evolucionado a multitud de botones, ruedas, y palancas que están dedicados a facilitar las tareas de trabajo con el ordenador, sobre todo cuando se trabaja con Internet. Hay modelos que no sólo tienen mandos que incorporan las funciones más comunes de los buscadores o navegadores, sino que tienen botones para memorizar las direcciones más visitadas por el usuario. Naturalmente, los fabricantes han aprovechado para poner botones fijos no configurables con direcciones a sus páginas.

La tecnologíaforce-feedback consiste en la transmisión por parte del ordenador de sensaciones a través del periférico. Podremos sentir diferentes sensaciones dependiendo de nuestras acciones. Por ejemplo, si nos salimos de la ventana activa, podremos notar que el ratón se opone a nuestros movimientos. Por supuesto, un campo también interesante para esto son los juegos. En los juegos de golf, se podría llegar a tener sensaciones distintas al golpear la bola dependiendo de si esta se encuentra en arena, hierba, etc... Lamentablemente, este tipo de ratones si se encuentra estrechamente unido a alfombrillas especiales.

Existen dos tipos de conexiones para el ratón: Serie y PS/2. En la práctica no hay ventaja de un tipo de puerto sobre otro.

  • Criterios para seleccionar un ratón

El primer criterio será la sencillez a menor número de botones y de mecanismos mayor será la sencillez de su uso. Aunque también para determinados trabajos en los que se precise utilizar de forma continuada el ratón será mejor elegir uno que facilite el trabajo a realizar y que además nos optimice el tiempo. Para ello son muy indicados sobre todos los ratones que poseen la ruedecilla central para que actúe de como scroll.

Otro criterio será el de ergonomía. El ratón deberá estar construido de modo que la mano pueda descansar naturalmente sobre él, alcanzando los dedos los pulsadores de forma có moda.

Para elegir un ratón USB, al igual que con el teclado, hay que tener instalado el sistema operativocon el suplemento USB o no funcionará. Un ratón USB tiene una ventaja. El ratón PS/2 consume una IRQ (normalmente la IRQ12) y si lo conectas al COM1/2, pierdes un puerto serie (que si no utilizas puedes anular en la BIOSde la placa base y recuperar una IRQ para otros dispositivos). Cierto que el puerto USB también consume una IRQ, pero si te posees HUB USB o tienes otro dispositivo USB (dos dispositivos en 2 puertos USB sin un HUB), con dos (o hasta 128 usando HUBs) dispositivos USB sólo consumes una IRQ, y si lo puedes conectar al puerto USB del teclado, no gastas una IRQ adicional ni el otro puerto USB.

  • Tipos de Mouse:
  • Mecánico: es una unidad de ingreso de datos equipada con uno o más botones y una pequeña esfera en su parte inferior, del tamaño de una mano y diseñado para trabajar sobre una tabla o mouse-pad ubicada al lado del teclado. Al mover el mouse la esfera rueda y un censor activa la acción.
  • Óptico: es el que emplea la luz para obtener sus coordenadas y se desplaza sobre una tabla que contiene una rejilla reflectante, colocada sobre el escritorio.
  • Marcas:

Genius, Microsoft, General Electric, Generico

  1. Teclado:

Es el dispositivo más común de entrada de datos. Se lo utiliza para introducir comandos, textos y números. Estrictamente hablando, es un dispositivo de entrada y de salida, ya que los LEDs también pueden ser controlados por la máquina.

  • Historia del teclado:

Cuando en 1867 Christopher Letham Sholes diseñó la máquina de escribir, la tecnología no estaba muy avanzada, y los primeros prototipos de la máquina de escribir se atascaban constantemente. Había entonces dos caminos para resolver el problema: hacer que la máquina funcione mejor, o que los mecanó grafos funcionen peor.

La disposición de las teclas se remonta a las primeras máquinasde escribir. Aquellas máquinas eran enteramente mecánicas. Al pulsar una letra en el teclado, se movía un pequeño martillo mecánico, que golpeaba el papel a través de una cinta impregnada en tinta. Al escribir con varios dedos de forma rápida, los martillos no tenían tiempo de volver a su sitio antes de que se moviesen los siguientes, de forma que se encallaban. Para que esto ocurriese lo menos posible, el diseñador del teclado QWERTY hizo una distribución de las letras de forma contraria a lo que hubiese sido lógico con base en la frecuencia con la que cada letra aparecía en un texto. De esta manera la pulsación era más lenta y los martillos se encallaban menos veces.

Cuando aparecieron las máquinas de escribir eléctricas, y después los ordenadores, con sus teclados también eléctricos, se consideró seriamente modificar la distribución de las letras en los teclados, colocando las letras más corrientes en la zona central. El nuevo teclado ya estaba diseñado y los fabricantes preparados para iniciar la fabricación. Sin embargo, el proyecto se canceló debido al temor de que los usuarios tuvieran excesivas incomodidades para habituarse al nuevo teclado, y que ello perjudicara la introducción de los ordenadores personales, que por aquel entonces se encontraban en pleno auge.

 

  • Funciones del teclado:

- Teclado alfanumérico: es un conjunto de 62 teclas entre las que se encuentran las letras, números, símbolos ortográficos, Enter, alt...etc.

- Teclado de Función: es un conjunto de 13 teclas entre las que se encuentran el ESC, tan utilizado en sistemas informáticos, más 12 teclas de función. Estas teclas suelen ser configurables pero por ejemplo existe un convenio para asignar la ayuda a F1.

- Teclado Numérico: se suele encontrar a la derecha del teclado alfanumérico y consta de los números así como de un Enter y los operadores numéricos de suma, resta,... etc.

- Teclado Especial: son las flechas de direccióny un conjunto de 9 teclas agrupadas en 2 grupos; uno de 6 (Inicio y fin entre otras) y otro de 3 con la tecla de impresión de pantalla entre ellas.

  • Tipos de Teclado:
  • De Membrana: Fueron los primeros que salieron y como su propio nombre indica presentan una membrana entre la tecla y el circuito que hace que la pulsación sea un poco más dura.
  • Mecánico: Estos nuevos teclados presentan otro sistema que hace que la pulsación sea menos traumática y más suave para el usuario.
  • Teclado para internet: El nuevo Internet Keyboard incorpora 10 nuevos botones de acceso directo, integrados en un teclado estándar de ergonómico diseñoque incluye un apoya manos. Los nuevos botones permiten desde abrir nuestro explorador Internet hasta ojear el correo electrónico. El software incluido, IntelliType Pro, posibilita la personalización de los botones para que sea el teclado el que trabaje como nosotros queramos que lo haga.
  • Teclados inalámbricos: Pueden fallar si están mal orientados, pero no existe diferencia con un teclado normal. En vez de enviar la señal mediante cable, lo hacen mediante infrarrojos, y la controladora no reside en el propio teclado, sino en el receptor que se conecta al conector de teclado en el PC. Si queremos conectar a nuestro equipo un teclado USB, primero debemos tener una BIOS que lo soporte y en segundo lugar debemos tener instalado el sistema operativo con el "Suplemento USB". Un buen teclado USB debe tener en su parte posterior al menos un conector USB adicional para poderlo aprovechar como HUB y poder conectar a él otros dispositivos USB como ratones, altavoces, etc
  • Marcas:

-Turbo Tecn

-Microsoft

-Genius

-Benq

-Acer

  1. Scanner:

Ateniéndonos a los criterios de la Real Academia de la Lengua, famosa por la genial introducción del término cederrón para denominar al CD-ROM, probablemente nada; para el resto de comunes mortales, digamos que es la palabra que se utiliza en informática para designar a un aparato digitalizador de imagen.

Por digitalizar se entiende la operación de transformar algo analógico (algo físico, real, de precisión infinita) en algo digital (un conjunto finito y de precisión determinada de unidades lógicas denominadas bits). En fin, que dejándonos de tanto formalismo sintáctico, en el caso que nos ocupa se trata de coger una imagen ( fotografía, dibujo o texto) y convertirla a un formato que podamos almacenar y modificar con el ordenador. Realmente un escáner no es ni más ni menos que los ojos del ordenador.

  • Cómo funciona

El proceso de captación de una imagen resulta casi idéntico para cualquier escáner: se ilumina la imagen con un foco de luz, se conduce mediante espejos la luz reflejada hacia un dispositivo denominado CCD que transforma la luz en señales eléctricas, se transforma dichas señales eléctricas a formato digital en un DAC (conversor analógico-digital) y se transmite el caudal de bits resultante al ordenador.

El CCD (Charge Coupled Device, dispositivo acoplado por carga -eléctrica-) es el elemento fundamental de todo escáner, independientemente de su forma, tamaño o mecánica. Consiste en un elemento electrónico que reacciona ante la luz, transmitiendo más o menos electricidad según sea la intensidad y el color de la luz que recibe; es un auténtico ojo electrónico. Hoy en día es bastante común, puede que usted posea uno sin saberlo: en su cámara de vídeo, en su fax, en su cámara de fotos digital...

La calidadfinal del escaneado dependerá fundamentalmente de la calidad del CCD; los demás elementos podrán hacer un trabajo mejor o peor, pero si la imagen no es captada con fidelidad cualquier operación posterior no podrá arreglar el problema. Teniendo en cuenta lo anterior, también debemos tener en cuenta la calidad del DAC, puesto que de nada sirve captar la luz con enorme precisión si perdemos mucha de esa información al transformar el caudal eléctrico a bits.

Por este motivo se suele decir que son preferibles los escáneres de marcasde prestigio como Nikon o Kodak a otros con una mayor resolución teórica, pero con CCDs que no captan con fidelidad los colores o DACs que no aprovechan bien la señal eléctrica, dando resultados más pobres, más planos.

  • La resolución

No podemos continuar la explicación sin definir este término, uno de los parámetros más utilizados (a veces incluso demasiado) a la hora de determinar la calidad de un escáner. La resolución (medida en ppp, puntos por pulgada) puede definirse como el número de puntos individuales de una imagen que es capaz de captar un escáner... aunque en realidad no es algo tan sencillo.

La resolución así definida sería la resolución óptica o real del escáner. Así, cuando hablamos de un escáner con resolución de "300x600 ppp" nos estamos refiriendo a que en cada línea horizontal de una pulgada de largo (2,54 cm) puede captar 300 puntos individuales, mientras que en vertical llega hasta los 600 puntos; como en este caso, generalmente la resolución horizontal y la vertical no coinciden, siendo mayor (típicamente el doble) la vertical.

Esta resolución óptica viene dada por el CCD y es la más importante, ya que implica los límites físicos de calidad que podemos conseguir con el escáner. Por ello, es un métodocomercial muy típico comentar sólo el mayor de los dos valores, describiendo como "un escáner de 600 ppp" a un aparato de 300x600 ppp o "un escáner de 1.200 ppp" a un aparato de 600x1.200 ppp; téngalo en cuenta, la diferencia es obtener o no el cuádruple de puntos.

Tenemos también la resolución interpolada; consiste en superar los límites que impone la resolución óptica (300x600 ppp, por ejemplo) mediante la estimación matemática de cuáles podrían ser los valoresde los puntos que añadimos por software a la imagen. Por ejemplo, si el escáner capta físicamente dos puntos contiguos, uno blanco y otro negro, supondrá que de haber podido captar un punto extra entre ambos sería de algún tono de gris. De esta forma podemos llegar a resoluciones absurdamente altas, de hasta 9.600x9.600 ppp, aunque en realidad no obtenemos más información real que la que proporciona la resolución óptica máxima del aparato. Evidentemente este valor es el que más gusta a los anunciantes de escáneres...

Por último está la propia resolución de escaneado, aquella que seleccionamos para captar una imagen concreta. Su valor irá desde un cierto mínimo (típicamente unos 75 ppp) hasta el máximo de la resolución interpolada. En este caso el valor es siempre idéntico para la resolución horizontal y la vertical, ya que si no la imagen tendría las dimensiones deformadas.

  • Los colores y los bits

Al hablar de imágenes, digitales o no, a nadie se le escapa la importancia que tiene el color. Una fotografía en color resulta mucho más agradable de ver que otra en tonos grises; un gráfico acertadamente coloreado resulta mucho más interesante que otro en blanco y negro; incluso un texto en el que los epígrafes o las conclusiones tengan un color destacado resulta menos monótono e invita a su lectura.

Sin embargo, digitalizar los infinitos matices que puede haber en una foto cualquiera no es un proceso sencillo. Hasta no hace mucho, los escáneres captaban las imágenes únicamente en blanco y negro o, como mucho, con un número muy limitado de matices de gris, entre 16 y 256. Posteriormente aparecieron escáneres que podían captar color, aunque el proceso requería tres pasadas por encima de la imagen, una para cada color primario (rojo, azul y verde). Hoy en día la práctica totalidad de los escáneres captan hasta 16,7 millones de colores distintos en una única pasada, e incluso algunos llegan hasta los 68.719 millones de colores.

Para entender cómo se llega a estas apabullantes cifras debemos explicar cómo asignan los ordenadores los colores a las imágenes. En todos los ordenadores se utiliza lo que se denomina sistema binario, que es un sistema matemático en el cual la unidad superior no es el 10 como en el sistema decimal al que estamos acostumbrados, sino el 2. Un bit cualquiera puede por tanto tomar 2 valores, que pueden representar colores (blanco y negro, por ejemplo); si en vez de un bit tenemos 8, los posibles valores son 2 elevado a 8 = 256 colores; si son 16 bits, 2 elevado a 16 = 65.536 colores; si son 24 bits, 2 elevado a 24 = 16.777216 colores; etc, etc.

Por tanto, "una imagen a 24 bits de color" es una imagen en la cual cada punto puede tener hasta 16,7 millones de colores distintos; esta cantidad de colores se considera suficiente para casi todos los usos normales de una imagen, por lo que se le suele denominar color real. La casi totalidad de los escáneres actuales capturan las imágenes con 24 bits, pero la tendencia actual consiste en escanear incluso con más bits, 30 ó incluso 36, de tal forma que se capte un espectro de colores absolutamente fiel al real; sin embargo, casi siempre se reduce posteriormente esta profundidad de color a 24 bits para mantener un tamaño de memoria razonable, pero la calidad final sigue siendo muy alta ya que sólo se eliminan los datos de color más redundantes.

 ¿Cuánto ocupa una imagen?

 

Tipo de original

Destino

Método escaneado

Tamaño en RAM

Fotografía 10x15 cm

Pantalla

75 ppp / 24 bits

0,4 MB

Impresora B/N

300 ppp / 8 bits

2 MB

Impresora color

300 ppp / 24 bits

6 MB

Texto o dibujo en blanco y negro tamaño DIN-A4

Pantalla

75 ppp / 1 bit

66 KB

Impresora

300 ppp / 8 bit

8 MB

OCR

300 ppp / 1 bit

1 MB

Foto DIN-A4 en color

Pantalla

75 ppp / 24 bits

1,6 MB

Impresora

300 ppp / 24 bits

25 MB

Tipos de Escáner:

  • Flatbed: significa que el dispositivo de barrido se desplaza a lo largo de un documento fijo. En este tipo de escáneres, como las fotocopiadoras de oficina, los objetos se colocan boca abajo sobre una superficie lisa de cristal y son barridos por un mecanismo que pasa por debajo de ellos. Otro tipo de escáner flatbed utiliza un elemento de barrido instalado en una carcasa fija encima del documento.
  • Escáner de mano: también llamado hand-held, porque el usuario sujeta el escáner con la mano y lo desplaza sobre el documento. Estos escáneres tienen la ventaja de ser relativamente baratos, pero resultan algo limitados porque no pueden leer documentos con una anchura mayor a 12 o 15 centímetros.
  • Lector de código de barras: dispositivo que mediante un haz de láserlee dibujos formados por barras y espacios paralelos, que codifica información mediante anchuras relativas de estos elementos. Los códigos de barras representan datos en una forma legible por el ordenador, y son uno de los medios más eficientes para la captación automática de datos.

Marcas:

Acer, Cannon, Benq, Hewlett Packard (HP), AGFFA

 

D) webcam

Una cámara web en la simple definición, es una cámara que esta simplemente conectada a la redo INTERNET. Como te puede imaginar tomando esta definición, las cámaras Web pueden tomar diferentes formas y usos.

En la Webcam radica un concepto sencillo; tenga en funcionamiento continuo una cámara de video, obtenga un programa para captar un imagen en un archivo cada determinados segundos o minutos, y cargue el archivo de la imagen en un servidorWeb para desplegarla en una página Web.

Unos de los tipos más comunes de cámaras personales que estan conectadas a computadoras del hogar, funcionando con la ayuda de algunos programasusuarios comparten una imagen en movimiento con otros. Dependiendo del usuario y de los programas, estas imagines pueden ser publicadas disponibles en el internet por vía de directorios especificados, o algunos disponibles a los amigos de usuarios que ahora poseen la propia dirección para conectarse. Esas cámaras son típicamente solo cuando los usuarios de las computadoras están encendidos y conectados a Internet. Con el apoyo de un modem DSL y Cable, usuarios viven sus computadoras en más y mejores observadores de web, esto tiene otras complicaciones incluyendo velocidad y seguridad.

Otros tipos comunes de cámara web son las que se basa en una escena en particular, monumento, u otro lugar de interés de visitantes potenciales. Más de estas cámaras estan disponibles 24/7. Puedes tener muchos pequeños conteos de pinturas (imágenes) detrás de otros muchos más excitantes en el tiempo del día, si este es el caso.

Tipos de Cámaras:

  • Cámara de fotos digital: Toma fotos con calidad digital, casi todas incorporan una pantalla LCD (Liquid Cristal Display) donde se puede visualizar la imagen obtenida. Tiene una pequeña memoria donde almacena fotos para después transmitirlas a un ordenador.
  • Cámara de video: Graba videos como si de una cámara normal se tratara, pero las ventajas que ofrece en estar en formato digital, que es mucho mejor la imagen, tiene una pantalla LCD por la que ves simultáneamente la imagen mientras grabas. Se conecta al PC y este recoge el video que has grabado, para poder retocarlo posteriormente con el software adecuado.
  • Marcas:

Creative, Genius, Olimpus, General Electric, Canon.

  1. Dispositivo señalador que permite sostener sobre la pantalla (fotosensible) un lápiz que está conectado al ordenador con un mecanismo de resorte en la punta o en un botón lateral, mediante el cual se puede seleccionar información visualizada en la pantalla. Cuando se dispone de información desplegada, con el lápiz óptico se puede escoger una opción entre las diferentes alternativas, presionándolo sobre la ventana respectiva o presionando el botón lateral, permitiendo de ese modo que se proyecte un rayo láser desde el lápiz hacia la pantalla fotosensible.

El lápiz contiene sensores luminosos y envía una señal a la computadora cada vez que registra una luz, por ejemplo al tocar la pantalla cuando los píxeles no negros que se encuentran bajo la punta del lápiz son refrescados por el haz de electrones de la pantalla.

La pantalla de la computadora no se ilumina en su totalidad al mismo tiempo, sino que el haz de electrones que ilumina los píxeles los recorre línea por línea, todas en un espacio de 1/50 de segundo. Detectando el momento en que el haz de electrones pasa bajo la punta del lápiz óptico, el ordenador puede determinar la posición del lápiz en la pantalla. El lápiz óptico no requiere una pantalla ni un recubrimiento especiales como puede ser el caso de una pantalla táctil, pero tiene la desventaja de que sostener el lápiz contra la pantalla durante periodos largos de tiempo llega a cansar al usuario.

 

  1. Lápiz Óptico:
  2. Joystick:

Palanca que se mueve apoyada en una base. Se trata, como el ratón, de un manejador de cursor. Consta de una palanca con una rótula en un extremo, que permite efectuar rotaciones según dos ejes perpendiculares. La orientación de la palanca es detectada por dos medidores angulares perpendiculares, siendo enviada esta información al ordenador. Un programa adecuado convertirá los ángulos de orientación de la palanca en desplazamiento del cursor sobre la misma.

Principalmente existen dos diferentes tipos de joystick: los analógicos y los digitales. Para la construcción de uno analógico se necesitan dos potenciómetros, uno para la dirección X y otro para la dirección Y, que dependiendo de la posición de la palanca de control producen un cambio en la tensión a controlar. Contienen además un convertidor tensión / frecuencia que proporciona los pulsos que se mandan por el puerto según la señal analógica de los potenciómetros. Los digitales no contienen elementos analógicos para obtener las señales de control, sino que los movimientos son definidos por el software de control que incluirá el dispositivo en cuestión.

Sistema de conexión

Van conectados al puerto juegos de la placa, al de la tarjeta de sonido, al puerto o puertos de una tarjeta de juegos, o eventualmente, al puerto serie o paralelo. Aunque la opción del puerto de la tarjeta de sonido es con mucho la más utilizada por ahorro de recursos.

Tecnología

Aquí dependiendo del tipo de joystick que estemos hablando (palanca, joypad, volante, etc) la tecnología utilizada es variopinta. A pesar de ello es útil optar por mandos robustos y que ofrezcan buen soporte de software. Los basados en tecnología digital son ideales para los que requieran precisión.

Muchos joystick permiten de forma sencilla y simplemente mediante el uso de un cable especial (en forma de Y), la utilización de dos dispositivos simultáneos.

Posibles problemas: Lo más frecuente son los provenientes de la mala configuración del software. Estos dispositivos necesitan ser instalados y calibrados mediante los programas incluidos antes de poder ser utilizados.

 

Figura 2.16. Diagrama de un joystick analógico

Tipos de Joysticks:

  • Pads. Se componen de una carcasa de plástico con un mando en forma de cruz para las direcciones y unos botones para las acciones. El control se hace de forma digital: es decir, o pulsas o no pulsas.
  • Joystick clásico. Una carcasa de plástico con una palanca con botones de disparo, imitando a las de los aviones. El control en estos joysticks suele ser analógico: cuánto más inclinas la palanca, más rápido responde el juego. Especialmente recomendados para simuladores de vuelo.
  • Volantes y pedales. Para juegos de coches.

También hay joysticks 3D, con procesadorincorporado (para responder a tus movimientos) e incluso los hay que dan sacudidas y tal cuando te pegan un tiro.

Marcas: Genius, Microsoft...

 

Dispositivos de salida

  1. Monitor o Pantalla:

Es el dispositivo en el que se muestran las imágenes generadas por el adaptador de vídeo del ordenador o computadora. El término monitor se refiere normalmente a la pantalla de vídeo y su carcasa. El monitor se conecta al adaptador de vídeo mediante un cable. Evidentemente, es la pantalla en la que se ve la información suministrada por el ordenador. En el caso más habitual se trata de un aparato basado en un tubo de rayos catódicos (CRT) como el de los televisores, mientras que en los portátiles es una pantalla plana de cristal líquido (LCD).

  • Adaptador: suele tratarse de una placa de circuito impreso (también llamada tarjeta de interfaz) que permite que el ordenador o computadora utilice un periférico para el cual todavía carece de las conexiones o placas de circuito necesarias. Por lo general, los adaptadores se emplean para permitir la ampliación del sistema al hardwarenuevo o diferente. En la mayoría de los casos, es un término que se emplea en vídeo, como en los casos de Adaptador de Vídeo Monocromo (MDA), Adaptador para Gráficos Color (CGA) y Adaptador de Gráficos Mejorado (EGA). Es común que una única tarjeta adaptadora contenga más de un adaptador, es decir que maneje más de un elemento de hardware.
  • Monitor analógico es un monitor visual capaz de presentar una gama continua (un número infinito) de colores o tonalidades de gris, a diferencia de un monitor digital, que sólo es capaz de presentar un número finito de colores. Un monitor color, a diferencia del monocromo, tiene una pantalla revestida internamente con trifósforo rojo, verde y azul dispuesto en bandas o configuraciones. Para iluminar el trifósforo y generar un punto de color, este monitor suele incluir también tres cañones de electrones, en este caso uno para cada color primario. Para crear colores como el amarillo, el rosado o el anaranjado, los tres colores primarios se mezclan en diversos grados.
  • Monitor digital es un monitor de vídeo capaz de presentar sólo un número fijo de colores o tonalidades de gris.
  • Monitor monocromo es un monitor que muestra las imágenes en un solo color: negro sobre blanco o ámbar o verde sobre negro. El término se aplica también a los monitoresque sólo muestran distintos niveles de gris. Se considera que los monitores monocromos de alta calidad son generalmente más nítidos y más legibles que los monitores de color con una resolución equivalente.

El número de puntos que puede representar el monitor por pantalla, tanto en horizontal como en vertical, se denomina resolución. Cuanto mayor sea la resolución del monitor mejor será la calidad de la imagen en pantalla y ésta debe estar en concordancia con el tamaño del monitor, por lo que en la actualidad no se recomienda un monitor menor de 17" ó 15".

El parámetro que mide la nitidez de la imagen se le denomina tamaño del punto (dot pitch) y mide la distancia entre dos puntos del mismo color. El mínimo exigible en la actualidad es 0,28 mm, no debiéndose admitir nada superior, aunque lo ideal sería de 0,25 mm (o menor). La frecuencia de los monitores es el denominado refresco de pantalla y se mide en Hz (hertzios), que serían equivalentes a los fotogramas por segundo de una película. Realmente quien proporciona estos refrescos es la tarjeta gráfica que tengamos instalada en nuestro ordenador.

Por lo que respecta a los ordenadores portátiles usan pantallas de cristal líquido (LCD). Suele haber de dos tipos: Dual Scan (DSTN) y de MatrizActiva (TFT), que tiene una visualización mucho mejor que la primera.

Tipo del monitor

Resolución en pixels

Número de colores

CGA

320 x 200

4

EGA

640 x 350

16

VGA

640 x 480

320 x 200

16

256

Súper VGA

800 x 600

1024 x 768

256

256

XGA

1024 x 768

65536

 

Marcas: Philips, Sony, Samsung, Microsoft, Apple…

  1. Impresoras:

Como indica su nombre, la impresoraes el periférico que el ordenador utiliza para presentar información impresa en papel. Las primeras impresoras nacieron muchos años antes que el PC e incluso antes que los monitores, siendo durante años el método más usual para presentar los resultados de los cálculos en aquellos primitivos ordenadores, todo un avance respecto a las tarjetas y cintas perforadas que se usaban hasta entonces.

Aunque en nada se parecen las modernas impresoras a sus antepasadas de aquellos tiempos, no hay duda de que igual que hubo impresoras antes que PCs, las habrá después de éstos, aunque se basen en tecnologías que aún no han sido siquiera inventadas. Resulta muy improbable que los seres humanos abandonemos totalmente el papel por una fría pantalla de ordenador.

 Generalidades y definiciones

Antes de adentrarnos en este complejo mundo de las impresoras, vamos a exponer algunos de los conceptos básicos sobre las mismas.

Velocidad

La velocidad de una impresora se suele medir con dos parámetros:

  • ppm: páginas por minuto que es capaz de imprimir;
  • cps: caracteres (letras) por segundo que es capaz de imprimir.

Actualmente se usa casi exclusivamente el valor de ppm, mientras que el de cps se reserva para las pocas impresoras matriciales que aún se fabrican. De cualquier modo, los fabricantes siempre calculan ambos parámetros de forma totalmente engañosa; por ejemplo, cuando se dice que una impresora de tinta llega a 7 páginas por minuto no se nos advierte de que son páginas con como mucho un 5% de superficie impresa, en la calidad más baja, sin gráficos y descontando el tiempo de cálculo del ordenador.

 Resolución

Probablemente sea el parámetro que mejor define a una impresora. La resolución es la mejor o peor calidad de imagen que se puede obtener con la impresora, medida en número de puntos individuales que es capaz de dibujar una impresora.

 

Se habla generalmente de ppp, puntos por pulgada (cuadrada) que imprime una impresora. Así, cuando hablamos de una impresora con resolución de "600x300 ppp" nos estamos refiriendo a que en cada línea horizontal de una pulgada de largo (2,54 cm) puede situar 600 puntos individuales, mientras que en vertical llega hasta los 300 puntos. Si sólo aparece una cifra ("600 ppp", por ejemplo) suele significar que la resolución horizontal es igual que la vertical.

  • El buffer de memoria

Es una pequeña cantidad de memoria que tienen todas las impresoras modernas para almacenar parte de la información que les va proporcionando el ordenador.

De esta forma el ordenador, sensiblemente más rápido que la impresora, no tiene que estar esperándola continuamente y puede pasar antes a otras tareas mientras termina la impresora su trabajo. Evidentemente, cuanto mayor sea el buffer más rápido y cómodo será el proceso de impresión, por lo que algunas impresoras llegan a tener hasta 256 Kb de buffer (en impresoras muy profesionales, incluso varios MB).

  • El interfaz o conector

Las impresoras se conectan al PC casi exclusivamente mediante el puerto paralelo, que en muchos sistemas operativos se denomina LPT1 (LPT2 en el caso del segundo puerto paralelo, si existiera más de uno). Como el puerto paralelo original no era demasiado rápido, en la actualidad se utilizan puertos más avanzados como el ECP o el EPP, que son más rápidos y añaden bidireccionalidad a la comunicación (es decir, que la impresora puede "hablarle" al PC, lo que antiguamente era imposible) al tiempo que mantienen la compatibilidad con el antiguo estándar. El método de trabajo del puerto paralelo (estándar, ECP, EPP...) se suele seleccionar en la BIOS del ordenador; para saber cómo hacerlo.

Otras formas menos comunes de conectar una impresora es mediante el puerto serie (el que utilizan los módems externos y muchos ratones; resulta bastante lento), mediante un conector USB (rápido y sencillo, aunque con pocas ventajas frente al puerto paralelo), mediante un dispositivo de infrarrojos (muy útil en el caso de portátiles) o directamente conectados a una red (y no a un ordenador conectado a la misma) en el caso de grandes impresoras para grupos.

  • Impresoras GDI o Win-impresoras

GDI son las siglas de Graphical Device Interface, un tipo de tecnología propia de Windows por la cual se pueden fabricar impresoras que cargan parte del trabajo que deberían realizar al ordenador al que están conectadas; por ejemplo, pueden carecer de memoria propia a base de utilizar la RAM del ordenador. Gracias a este sistema se ahorran diversos componentes electrónicos en la fabricación de la impresora, lo que repercute en una bajada de su precio.

Las desventajas de estas impresoras son dos: primeramente, dependen de la potencia del ordenador al que están conectadas, que deberá ser como poco un Pentium rápido con una cantidad generosa de RAM; y además, sólo funcionan en Windows.

Una impresora GDI será siempre un poco más lenta que el modelo equivalente "clásico" (salvo que se tenga un ordenador potente), aparte de cargar bastante al sistema operativo.

  • Tipos de impresoras

Si queremos clasificar los diversos tipos de impresoras que existen, el método más lógico es hacerlo atendiendo a su tecnología de impresión, es decir, al método que emplean para imprimir en el papel, e incluir en dicha clasificación como casos particulares otras consideraciones como el uso de color, su velocidad, etc. Eso nos lleva a los tres tipos clásicos: matriciales, de tinta y láser.

 

Impresoras de impacto (matriciales)

Fueron las primeras que surgieron en el mercado. Se las denomina "de impacto" porque imprimen mediante el impacto de unas pequeñas piezas (la matriz de impresión) sobre una cinta impregnada en tinta, la cual suele ser fuente de muchos problemas si su calidad no es la que sería deseable.

Según cómo sea el cabezal de impresión, se dividen en dos grupos principales: de margarita y de agujas. Las de margarita incorporan una bola metálica en la que están en relieve las diversas letras y símbolos a imprimir; la bola pivota sobre un soporte móvil y golpea a la cinta de tinta, con lo que se imprime la letra correspondiente. El método es absolutamente el mismo que se usa en muchas máquinas de escribir eléctricas, lo único que las diferencia es la carencia de teclado.

Las impresoras de margarita y otros métodos que usan tipos fijos de letra están en completo desuso debido a que sólo son capaces de escribir texto; además, para cambiar de tipo o tamaño de letra deberíamos cambiar la matriz de impresión (la bola) cada vez. Por otra parte, la calidad del texto y la velocidad son muy altas, además de que permiten obtener copias múltiples en papel de autocopia o papel carbón.

Las impresoras de agujas, muchas veces denominadas simplemente matriciales, tienen una matriz de pequeñas agujas que impactan en el papel formando la imagen deseada; cuantas más agujas posea el cabezal de impresión mayor será la resolución, que suele estar entre 150 y 300 ppp, siendo casi imposible superar esta última cifra.

Aunque la resolución no sea muy alta es posible obtener gráficos de cierta calidad, si bien en blanco y negro, no en color. El uso de color implica la utilización de varias cintas más anchas, además de ser casi imposible conseguir una gama realista de colores, más allá de los más básicos.

 

Al ser impresoras de impacto pueden obtener copias múltiples, lo que las hace especialmente útiles en oficinas o comercios para la realización de listados, facturas, albaranes y demás documentos. Su velocidad en texto es de las más elevadas, aunque a costa de producir un ruidociertamente elevado, que en ocasiones llega a ser molesto. Resulta muy común encontrarlas con alimentadores para papel continuo, lo que sólo ocurre con algunas impresoras de tinta de precio elevado.

En general, las impresoras matriciales de agujas se posicionan como impresoras de precio reducido, calidad media-baja, escaso mantenimiento y alta capacidad de impresión. Entre los pocos fabricantes que quedan de estas impresoras destaca Epson, con un enorme catálogo con opciones y precios para todos los gustos.

 

  • Impresoras de tinta

Por supuesto, las impresoras matriciales utilizan tinta, pero cuando nos referimos a impresora de tinta nos solemos referir a aquéllas en las que la tinta se encuentra en forma más o menos líquida, no impregnando una cinta como en las matriciales.

La tinta suele ser impulsada hacia el papel por unos mecanismos que se denominan inyectores, mediante la aplicación de una carga eléctrica que hace saltar una minúscula gota de tinta por cada inyector, sin necesidad de impacto. De todas formas, los entresijos últimos de este proceso varían de una a otra marca de impresoras (por ejemplo, Canon emplea en exclusiva lo que denomina "inyección por burbuja") y no son realmente significativos a la hora de adquirir una u otra impresora.

Estas impresoras se destacan por la sencilla utilización del color. La resolución de estas impresoras es en teoría bastante elevada, hasta de 1.440 ppp, pero en realidad la colocación de los puntos de tinta sobre el papel resulta bastante deficiente, por lo que no es raro encontrar que el resultado de una impresora láser de 300 ppp sea mucho mejor que el de una de tinta del doble de resolución. Por otra parte, suelen existir papeles especiales, mucho más caros que los clásicos folios de papelería, para alcanzar resultados óptimos a la máxima resolución o una gama de colores más viva y realista.

El principal destinatario de este tipo de impresoras es el usuario doméstico, además del oficinista que no necesita trabajar con papel continuo ni con copias múltiples pero sí ocasionalmente con color (logotipos, gráficos, pequeñas imágenes...) con una calidad aceptable. Fabricantes existen decenas, desde los clásicos contendientes Epson y Hewlett-Packard (hp) hasta otros de mucho menor volumen de ventas pero que no desmerecen nada, como son Canon, Tektronik, Lexmark, Oki...

Una nota sobre los cartuchos de tinta: son relativamente caros, debido a que generalmente no sólo contienen la tinta, sino parte o la totalidad del cabezal de impresión; este sistema asegura que el cabezal siempre está en buen estado, pero encarece el precio. Existen decenas de sistemas de recarga de cartuchos para rellenar el cartucho aprovechando el cabezal, pero en el 99% de los casos son un engorro y se pone todo perdido de tinta.

  • Impresoras láser

Son las de mayor calidad del mercado, si entendemos por calidad la resolución sobre papel normal que se puede obtener, unos 600 ppp reales. En ellas la impresión se consigue mediante un láser que va dibujando la imagen electrostáticamente en un elemento llamado tambor que va girando hasta impregnarse de un polvo muy fino llamado tóner (como el de fotocopiadoras) que se le adhiere debido a la carga eléctrica. Por último, el tambor sigue girando y se encuentra con la hoja, en la cual imprime el tóner que formará la imagen definitiva.

 

El único problema de importancia de las impresoras láser es que sólo imprimen en blanco y negro. En realidad, sí existen impresoras láser de color, que dan unos resultados bastante buenos, pero su precio es absolutamente desorbitado.

Los láser son muy resistentes, mucho más rápidas y mucho más silenciosas que las impresoras matriciales o de tinta, y aunque la inversióninicial en una láser es mayor que en una de las otras, el tóner sale más barato a la larga que los cartuchos de tinta, por lo que a la larga se recupera la inversión. Por todo ello, los láser son idóneas para entornos de oficina con una intensa actividad de impresión, donde son más importantes la velocidad, la calidad y el escaso coste de mantenimiento que el color o la inversión inicial.

  • Impresoras para fotos

Constituyen una categoría de reciente aparición; usan métodos avanzados como la sublimación o las ceras o tintas sólidas, que garantizan una pureza de color excepcional, si bien con un coste relativamente elevado en cuanto a consumibles y una velocidad baja.

La calidad de estas impresoras suele ser tal, que muchas veces el resultado es indistinguible de una copia fotográfica tradicional, incluso usando resoluciones relativamente bajas como 200 ppp. Sin embargo, son más bien caras y los formatos de impresión no suelen exceder el clásico 10x15 cm, ya que cuando lo hacen los precios suben vertiginosamente y nos encontramos ante impresoras más apropiadas para pruebas de imprenta y autoedición.

  • Impresoras de gran formato

Resulta un calificativo tan bueno como cualquier otro para definir a las impresoras, casi exclusivamente de tinta, que imprimen en formatos hasta el A2 (42x59,4 cm). Son impresoras que asocian las ventajas de las impresoras de tinta en cuanto a velocidad, color y resolución aceptables junto a un precio bastante ajustado.

Se utilizan para realizar carteles o pósters, pequeños planos o pruebas de planos grandes, así como cualquier tarea para la que sea apropiada una impresora de tinta de menor formato: cartas, informes, gráficos... Hasta hace poco sólo existían un par de modelos, ahora las hay de Epson, Canon, HP...

  • Impresoras para grupos

Son impresoras de gran capacidad, preparadas para funcionar en una red incluso sin depender de un ordenador de la misma. Suelen ser impresoras láser, en ocasiones con soporte para color, con bandejas para 500 hojas o más, velocidades de más de 12 ppm (reales!!) y memoria por encima de 6 MB. Últimamente se tiende a que tengan funciones de fotocopiadora o capacidad para realizar pequeñas tiradas sin necesidad de emplear una fotocopiadora, e incluso clasifican y encuadernan.

 

Uso

Impresora a utilizar

Características

Textos, copias múltiples, listados, facturas

Matricial

Baratas, bajo mantenimiento, poca resolución

Textos y gráficos en blanco y negro y color

De tinta

Baratas, consumibles algo caros, resolución aceptable

Láser color

Muy caras, muy rápidas, alta resolución; para grandes cargas de trabajo

Textos y gráficos en blanco y negro

Láser blanco y negro

Mayor inversión inicial, menor mantenimiento, alta resolución

Formatos grandes, posters, carteles, planos

De tinta gran formato

Baratas, formatos algo reducidos para planos (A3, A2)

Plotter

Caros, específicos para planos, formatos A1 o A0

Fotografías

Sublimación, ceras sólidas o similar

Caras en consumibles, formato reducido, algo lentas, gran calidad, muy caras en formatos grandes

Grandes cargas de trabajo

Láser color o láser blanco y negro de alta gama

Caras, bajo mantenimiento, alta velocidad y resolución

 

4. Describa cinco unidades lógicas de almacenamiento

Arquitectura

A pesar de que las tecnologías empleadas en las computadoras digitales han cambiado mucho desde que aparecieron los primeros modelos en los años 40, la mayoría todavía utiliza la Arquitectura de von Neumann, publicada a principios de los años 1940 por John von Neumann, que otros autores atribuyen a John Presper Eckert y John William Mauchly.

La arquitectura de Von Neumann describe una computadora con 4 secciones principales: la unidad aritmético lógica (ALU por sus siglas del inglés: Arithmetic Logic Unit), la unidad de control, la memoria central, y los dispositivos de entrada y salida (E/S). Estas partes están interconectadas por canales de conductores denominados buses:

  • La memoria es una secuencia de celdas de almacenamiento numeradas, donde cada una es un bit o unidad de información. La instrucción es la información necesaria para realizar lo que se desea con el computador. Las «celdas» contienen datos que se necesitan para llevar a cabo las instrucciones, con el computador. El número de celdas varían mucho de computador a computador, y las tecnologías empleadas para la memoria han cambiado bastante; van desde los relés electromecánicos, tubos llenos de mercurio en los que se formaban los pulsos acústicos, matrices de imanes permanentes, transistores individuales a circuitos integrados con millones de celdas en un solo chip. En general, la memoria puede ser reescrita varios millones de veces (memoria RAM); se parece más a una pizarra que a una lápida (memoria ROM) que sólo puede ser escrita una vez.
  • El procesador (también llamado Unidad central de procesamiento o CPU) consta de manera básica de los siguientes elementos:

Un típico símbolo esquemático para una ALU: A y B son operandos; R es la salida; F es la entrada de la unidad de control; D es un estado de la salida.

  • La unidad aritmético lógica o ALU es el dispositivo diseñado y construido para llevar a cabo las operaciones elementales como las operaciones aritméticas (suma, resta, ...), operaciones lógicas (Y, O, NO), y operaciones de comparación o relacionales. En esta unidad es en donde se hace todo el trabajo computacional.
  • La unidad de control sigue la dirección de las posiciones en memoria que contienen la instrucción que el computador va a realizar en ese momento; recupera la información poniéndola en la ALU para la operación que debe desarrollar. Transfiere luego el resultado a ubicaciones apropiadas en la memoria. Una vez que ocurre lo anterior, la unidad de control va a la siguiente instrucción (normalmente situada en la siguiente posición, a menos que la instrucción sea una instrucción de salto, informando al ordenador de que la próxima instrucción estará ubicada en otra posición de la memoria).

Los procesadores pueden constar de además de las anteriormente citadas, de otras unidades adicionales como la unidad de Coma Flotante

Computadora de Escritorio.

Periféricos y dispositivos auxiliares

Artículo principal: Periférico

Monitor

Artículo principal: Monitor de computadora

El monitor o pantalla de computadora, es un dispositivo de salida que, mediante una interfaz, muestra los resultados, o los gráficos del procesamiento de una computadora. Existen varios tipos de monitores: los de tubo de rayos catódicos (o CRT), los de pantalla de plasma (PDP), los de pantalla de cristal líquido (o LCD), de paneles de diodos orgánicos de emisión de luz (OLED), o Láser-TV, entre otros.

Teclado

Artículo principal: Teclado de computadora

Un teclado de computadora es un periférico, físico o virtual (por ejemplo teclados en pantalla o teclados táctiles), utilizado para la introducción de órdenes y datos en una computadora. Tiene su origen en los teletipos y las máquinas de escribir eléctricas, que se utilizaron como los teclados de los primeros ordenadores y dispositivos de almacenamiento (grabadoras de cinta de papel y tarjetas perforadas). Aunque físicamente hay una miríada de formas, se suelen clasificar principalmente por la distribución de teclado de su zona alfanumérica, pues salvo casos muy especiales es común a todos los dispositivos y fabricantes (incluso para teclados árabes y japoneses).

Ratón

Artículo principal: Ratón (informática)

El mouse (del inglés, pronunciado [ˈmaʊs]) o ratón es un periférico de computadora de uso manual, utilizado como entrada o control de datos. Se utiliza con una de las dos manos del usuario y detecta su movimiento relativo en dos dimensiones por la superficie horizontal en la que se apoya, reflejándose habitualmente a través de un puntero o flecha en el monitor. Anteriormente, la información del desplazamiento era transmitida gracias al movimiento de una bola debajo del ratón, la cual accionaba dos rodillos que correspondían a los ejes X e Y. Hoy, el puntero reacciona a los movimientos debido a un rayo de luz que se refleja entre el ratón y la superficie en la que se encuentra. Cabe aclarar que un ratón óptico apoyado en un espejo o sobre un barnizado por ejemplo es inutilizable, ya que la luz láser no desempeña su función correcta. La superficie a apoyar el ratón debe ser opaca, una superficie que no genere un reflejo, es recomendable el uso de alfombrillas.

Impresora

Artículo principal: Impresora

Una impresora es un periférico de computadora que permite producir una copia permanente de textos o gráficos de documentos almacenados en formato electrónico, imprimiendo en papel de lustre los datos en medios físicos, normalmente en papel o transparencias, utilizando cartuchos de tinta o tecnología láser. Muchas impresoras son usadas como periféricos, y están permanentemente unidas a la computadora por un cable. Otras impresoras, llamadas impresoras de red, tienen un interfaz de red interno (típicamente wireless o Ethernet), y que puede servir como un dispositivo para imprimir en papel algún documento para cualquier usuario de la red. Hoy en día se comercializan impresoras multifuncionales que aparte de sus funciones de impresora funcionan simultáneamente como fotocopiadora y escáner, siendo éste tipo de impresoras las más recurrentes en el mercado.

Escáner

Artículo principal: Escáner de computadora

En informática, un escáner (del idioma inglés: scanner) es un periférico que se utiliza para convertir, mediante el uso de la luz, imágenes o cualquier otro impreso a formato digital. Actualmente vienen unificadas con las impresoras formando Multifunciones

Almacenamiento Secundario

Artículo principal: Disco duro

Artículo principal: Unidad de Estado Sólido

El disco duro es un sistema de grabación magnética digital, es donde en la mayoría de los casos reside el Sistema operativo de la computadora. En los discos duros se almacenan los datos del usuario. En él encontramos dentro de la carcasa una serie de platos metálicos apilados girando a gran velocidad. Sobre estos platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos.

Una Unidad de estado sólido es un sistema de memoria no volátil. Están formados por varios chips de memoria NAND Flash en su interior unidos a una controladora que gestiona todos los datos que se transfieren. Tienen una gran tendencia a suceder definitivamente a los discos duros mecánicos por su gran velocidad y tenacidad. Al no estar formadas por discos en ninguna de sus maneras, no se pueden categorizar como tal, aunque erróneamente se tienda a ello.

Altavoces

Los altavoces se utilizan para escuchar los sonidos emitidos por el computador, tales como música, sonidos de errores, conferencias, etc.

  • Altavoces de las placas base: Las placas base suelen llevar un dispositivo que emite pitidos para indicar posibles errores o procesos

5. que es un monitor c.r.t y por que se dice que tiene efectos dañinos para el ser humano

Monitores CRT

El monitor esta basado en un elemento CRT (Tubo de rayos catódicos), los actuales monitores, controlados por un microprocesador para almacenar muy diferentes formatos, así como corregir las eventuales distorsiones, y con capacidad de presentar hasta 1600x1200 puntos en pantalla. Los monitores CRT emplean tubos cortos, pero con la particularidad de disponer de una pantalla completamente plana.

Monitores color:

Las pantallas de estos monitores están formadas internamente por tres capas de material de fósforo, una por cada color básico (rojo, verde y azul). También consta de tres cañones de electrones, e igual que las capas de fósforo hay una por cada color.

Para formar un color en pantalla que no sea ninguno de los colores básicos, se combina las intensidades de loas haces de electrones de los tres colores básicos.

Monitores monocromáticos:

Muestra por pantalla u solo color: negro sobre blanco o ámbar, o verde sobre negro. Uno de estos monitores con una resolución equivalente a la de un monitor a color, si es de buena calidad, generalmente es más nítido y legible.

Funcionamiento de un monitor CRT

En la parte trasera del tubo encontramos la rejilla catódica, que envía electrones a la superficie interna del tubo. Estos electrones al estrellarse sobre el fósforo hacen que este se ilumine. Un CRT es básicamente un tubo vacío con un cátodo (el emisor de luzelectrónico y un ánodo (la pantalla recubierta de fósforo) que permiten a los electrones viajar desde el terminal negativo al positivo. El yugo del monitor, una bobina magnética, desvía la emisión de electrones repartiéndolo por la pantalla, para pintar las diversas líneas que forman un cuadro o imagen completa.

Los monitores monocromos utilizan un único tipo de fósforo pero los monitores de color emplean un fósforo de tres colores distribuidos por triadas. Cada haz controla uno de los colores básicos: rojo, azul y verde sobre los puntos correspondientes de la pantalla.

A medida que mejora la tecnología de los monitores, la separación entre los puntos disminuye y aumenta la resolución en pantalla (la separación entre los puntos oscila entre 0.25mm y 0.31mm). Loa avances en los materialesy las mejoras de diseño en el haz de electrones, producirían monitores de mayor nitidez y contraste. El fósforo utilizado en un monitor se caracteriza por su persistencia, esto es, el periodo que transcurre desde que es excitado (brillante) hasta que se vuelve inactivo(oscuro).

Características de monitores CRT

El refresco de pantalla

El refresco es el número de veces que se dibuja a pantalla por segundo. Evidentemente, cuando mayor sea la cantidad de veces que se refresque, menos se nos cansara la vista y trabajaremos mas cómodos y con menos problemas visuales.

La velocidaddel refresco se mide en hertzios (Hz. 1/segundo), así que 70 Hz significa que la pantalla se dibuja 70 veces por segundo. Para trabajar cómodamente necesitaremos esos 70 Hz. Para trabajar con el mínimo de fatiga visual, 80Hz o mas. El mínimo son 60 Hz; por debajo de esa cifra los ojos sufren demasiado, y unos minutos basta para empezar a sentir escozor o incluso un pequeño dolor de cabeza.

La frecuencia máxima de refresco de un monitor se ve limitada por la resolución de la pantalla. Esta ultima decide el numero de líneas o filas de la mascara de la pantalla y el resultado que se obtiene del numero de las filas de un monitor y de su frecuencia de exploración vertical (barrido o refresco) es la frecuencia de exploración horizontal; esto es el numero de veces por segundo que el haz de electrones debe desplazarse de izquierda a derecha de la pantalla.

Quien proporciona estos refrescos es la tarjeta grafica, pero quien debe presentarlos es el monitor. Si ponemos un refresco de pantalla que el monitor no soporta podríamos dañarlo, por lo que debemos conocer sus capacidades a fondo.

Resolución

Se denomina resolución de pantalla a la cantidad de píxeles que se pueden ubicar en un determinado modo de pantalla. Estos píxeles están a su vez distribuidos entre el total de horizontales y el de vértices. Todos los monitores pueden trabajar con múltiples modos, pero dependiendo del tamaño del monitor, unos nos serán más útiles que otros.

Un monitor cuya resolución máxima sea de 1024x768 píxeles puede representar hasta 768 líneas horizontales de 1024 píxeles cada una, probablemente además de otras resoluciones inferiores como 640x480 u 800x600. Cuanto mayor sea la resolución de un monitor, mejor será la calidad de la imagen de pantalla, y mayor será la calidad del monitor. La resolución debe ser apropiada además al tamaño del monitor; hay que decir también que aunque se disponga de un monitor que trabaje a una resolución de 1024x768 píxeles, si la tarjeta grafica instalada es VGA (640x480) la resolución de nuestro sistema será esta última.

Tipos de monitores por resolución:

TTL: Solo se ve texto, generalmente son verdes o ámbar.

CGA: Son de 4 colores máximo o ámbar o verde, son los primeros gráficos con una resolución de 200x400 hasta 400x600.

EGA: Monitores a colores 16 máximo o tonos de gris, con resoluciones de 400x600, 600x800.

VGA: Monitores a colores de 32 bits de color verdadero o en tono de gris, soporta 600x800, 800x1200

SVGA:Conocido como súper VGA q incrementa la resolución y la cantidad de colores de 32 a 64 bits de color verdadero, 600x400 a 1600x1800.

UVGA: No varia mucho del súper VGA, solo incrementa la resolución a 1800x1200.

XGA: Son monitores de alta resolución, especiales para diseño, su capacidad grafica es muy buena. Además la cantidad de colores es mayor.

Cosecuencias tecnologicas en el medio ambiente

Cosecuencias tecnologicas en el medio ambiente 

1. averiguar las consecuencias del desarrollo tecnologico en el medio ambiente y en la naturaleza

Medio ambiente y tecnologías 

La principal finalidad de las tecnologías es transformar el entorno humano (natural y social), para adaptarlo mejor a las necesidades y deseos humanos. En ese proceso se usan recursos naturales (terreno, aire, agua, materiales, fuentes de energía...) y personas que proveen la información, mano de obra y mercado para las actividades tecnológicas.

El principal ejemplo de transformación del medio ambiente natural son las ciudades, construcciones completamente artificiales por donde circulan productos naturales como aire y agua, que son contaminados durante su uso. La tendencia, aparentemente irreversible, es la urbanización total del planeta. Se estima que en el transcurso de 2008 la población mundial urbana superará a la rural por primera vez en la historia.[40] [41] Esto ya ha sucedido en el siglo XX para los países más industrializados. En casi todos los países la cantidad de ciudades está en continuo crecimiento y la población de la gran mayoría de ellas está en continuo aumento. La razón es que las ciudades proveen mayor cantidad de servicios esenciales, puestos de trabajo, comercios, seguridad personal, diversiones y acceso a los servicios de salud y educación.

Además del creciente reemplazo de los ambientes naturales (cuya preservación en casos particularmente deseables ha obligado a la creación de parques y reservas naturales), la extracción de ellos de materiales o su contaminación por el uso humano, está generando problemas de difícil reversión. Cuando esta extracción o contaminación excede la capacidad natural de reposición o regeneración, las consecuencias pueden ser muy graves. Son ejemplos:

Se pueden mitigar los efectos que las tecnologías producen sobre el medio ambiente estudiando los impactos ambientales que tendrá una obra antes de su ejecución, sea ésta la construcción de un caminito en la ladera de una montaña o la instalación de una gran fábrica de papel a la vera de un río. En muchos países estos estudios son obligatorios y deben tomarse recaudos para minimizar los impactos negativos (rara vez pueden eliminarse por completo) sobre el ambiente natural y maximizar (si existen) los impactos positivos (caso de obras para la prevención de aludes o inundaciones).

Para eliminar completamente los impactos ambientales negativos no debe tomarse de la naturaleza o incorporar a ella más de los que es capaz de reponer, o eliminar por sí misma. Por ejemplo, si se tala un árbol se debe plantar al menos uno; si se arrojan residuos orgánicos a un río, la cantidad no debe exceder su capacidad natural de degradación. Esto implica un costo adicional que debe ser provisto por la sociedad, transformando los que actualmente son costos externos de las actividades humanas (es decir, costos que no paga el causante, por ejemplo los industriales, sino otras personas) en costos internos de las actividades responsables del impacto negativo. De lo contrario se generan problemas que deberán ser resueltos por nuestros descendientes, con el grave riesgo de que en el transcurso del tiempo se transformen en problemas insolubles.

El concepto de desarrollo sustentable o sostenible tiene metas más modestas que el probablemente inalcanzable impacto ambiental nulo. Su expectativa es permitir satisfacer las necesidades básicas, no suntuarias, de las generaciones presentes sin afectar de manera irreversible la capacidad de las generaciones futuras de hacer lo propio. Además del uso moderado y racional de los recursos naturales, esto requiere el uso de tecnologías específicamente diseñadas para la conservación y protección del medio ambiente.

 

    

2. siete efectos positivos y siete efectos negativos de la tecnologia en el medio ambiente

. efectos negativos

1. la tala de arboles

2. la deforestacion 

3. la contaminacion

4. el calentamiento global

5. la destruccion de la capa de ozono 

6. la contaminacion de la atmosfera 

7. los desechos toxicos 

. efectos positivos 

1. nueva tecnologia 

2. hay mas plata para los ricos pero para los pobres siguen siendo pobres

3. hay mas desarrollo 

4. hay mas trabajo 

5. hay mas desarrollo intelectual

6. mejor calidad de vida 

7. hay mas avances 

3. que es el efecto invernadero justifica tu respuesta 

  

Se denomina efecto invernadero al fenómeno por el cual determinados gases, que son componentes de la atmósfera planetaria, retienen parte de la energía que el suelo emite por haber sido calentado por la radiación solar. Afecta a todos los cuerpos planetarios dotados de atmósfera. De acuerdo con la mayoría de la comunidad científica, el efecto invernadero se está viendo acentuado en la Tierra por la emisión de ciertos gases, como el dióxido de carbono y el metano, debida a la actividad humana.

Este fenómeno evita que la energía solar recibida constantemente por la Tierra vuelva inmediatamente al espacio, produciendo a escala planetaria un efecto similar al observado en un invernadero.

Efecto Invernadero de varios gases de la atmósfera

Es el proceso por el que ciertos gases de la atmósfera retienen gran parte de la radiación infrarroja emitida por la Tierra y la reemiten de nuevo a la superficie terrestre calentando la misma. Estos gases han estado presentes en la atmósfera en cantidades muy reducidas durante la mayor parte de la historia de la Tierra.[10]

Aunque la atmósfera seca está compuesta prácticamente por nitrógeno (78,1%), oxígeno (20,9%) y argón (0,93%), son gases muy minoritarios en su composición como el dióxido de carbono (0,035%: 350 ppm), el ozono y otros los que desarrollan esta actividad radiativa. Además, la atmósfera contiene vapor de agua (1%: 10.000 ppm) que también es un gas radiativamente activo, siendo con diferencia el gas natural invernadero más importante. El dióxido de carbono ocupa el segundo lugar en importancia.[3]

La denominada curva Keeling muestra el continuo crecimiento de CO2 en la atmósfera desde 1958. Recoge las mediciones de Keeling en el observatorio del volcán Mauna Loa. Estas mediciones fueron la primera evidencia significativa del rápido aumento de CO2 en la atmósfera y atrajo la atención mundial sobre el impacto de las emisiones de los gases invernadero.[11]

El efecto invernadero es esencial para la vida del planeta: sin CO2 ni vapor de agua (sin el efecto invernadero) la temperatura media de la Tierra sería unos 33 °C menos, del orden de 18 °C bajo cero, lo que haría inviable la vida.[12]

Actualmente el CO2 presente en la atmósfera está creciendo de modo no natural por las actividades humanas, principalmente por la combustión de carbón, petróleo y gas natural que está liberando el carbono almacenado en estos combustibles fósiles y la deforestación de la selva pluvial que libera el carbono almacenado en los árboles. Por tanto es preciso diferenciar entre el efecto invernadero natural del originado por las actividades de los hombres (o antropogénico).[10]

La población se ha multiplicado y la tecnología ha alcanzado una enorme y sofisticada producción de forma que se está presionando muchas partes del medio ambiente terrestre siendo la Atmósfera la zona más vulnerable de todas por su delgadez. Dado el reducido espesor atmosférico la alteración de algunos componentes moleculares básicos que también se encuentran en pequeña proporción supone un cambio significativo. En concreto, la variación de la concentración de CO2, el más importante de los gases invernadero de la atmósfera. Ya se ha explicado el papel básico que estos gases tienen como reguladores de la temperatura del Planeta.[13]

Los gases invernadero permanecen activos en la atmósfera mucho tiempo, por eso se les denomina de larga permanencia. Eso significa que los gases que se emiten hoy permanecerán durante muchas generaciones produciendo el efecto invernadero. Así del CO2 emitido a la atmósfera: sobre el 50% tardará 30 años en desaparecer, un 30% permanecerá varios siglos y el 20% restante durará varios millares de años.[14]

La concentración de CO2 atmosférico se ha incrementado desde la época preindustrial (año 1.750) desde un valor de 280 ppm a 379 ppm en 2005. Se estima que 2/3 de las emisiones procedían de la quema de combustibles fósiles (petroleo, gas y carbón) mientras un 1/3 procede del cambio en la utilización del suelo (Incluida la deforestación). Del total emitido solo el 45% permanece en la atmósfera, sobre el 30% es absorbido por los océanos y el restante 25% pasa a la biosfera terrestre. Por tanto no solo la atmósfera está aumentando su concentración de CO2, también está ocurriendo en los océanos y en la biosfera.[14]

Gases de efecto invernadero

Incrementos en la atmósfera de los cinco gases responsables del 97% del efecto invernadero antropogénico en el periodo 1976-2003.

Los denominados gases de efecto invernadero o gases invernadero, responsables del efecto descrito, son:

Si bien todos ellos (salvo los CFCs) son naturales, en tanto que ya existían en la atmósfera antes de la aparición del hombre, desde la Revolución industrial y debido principalmente al uso intensivo de los combustibles fósiles en las actividades industriales y el transporte, se han producido sensibles incrementos en las cantidades de óxido de nitrógeno y dióxido de carbono emitidas a la atmósfera, con el agravante de que otras actividades humanas, como la deforestación, han limitado la capacidad regenerativa de la atmósfera para eliminar el dióxido de carbono, principal responsable del efecto invernadero.

Gases de Efecto Invernadero afectados por actividades humanas

Descripción

CO2 

CH4 

N2O 

CFC-11 

HFC-23 

CF4 

Concentración pre industrial

280 ppm

700 ppb

270 ppb

0

0

40 ppt

Concentración en 1998

365 ppm

1.745 ppb

314 ppb

268 ppt

14 ppt

80 ppt

Permanencia en la atmósfera

de 5 a 200 años

12 años

114 años

45 años

260 años

<50.000 años

Fuente: ICCP, Clima 2001, La base científica, Resumen técnico del Informe del Grupo de Trabajo I, p. 38[15]

 

 4. elavoral un ensayo acerca de los temas investigados

En mi opinion todo lo que esta sufriendo el planeta se debe en gran parte a la tecnologia ya que esta nos afecta a todos ya que hay mas deforestaciones, mas contaminacion del aire ya sea por el humo de los carros o por los quimicos que desechan las fabricas.

con el desarrollo tecnologico cada vez hay mas maquinas que remplazan al humano y por ello hay mas desempleo y estas maquinas destruyen cada vez mas el planeta hay calentamiento en los polos y estos se derriten por la mano de hombre que no se concientenizan que los animales se estan exterminando, las cocechas son cada vez mas defectuosas cada dia mas enfermedades intratables y la tecnologia lo unico que hace es poner a la gente a pensar en que debe ser intelectual y modreno pero no piensa en el daño que se le hace a la tierra. al deforestar los arboles o a destruir la fauna y la flora solo por ambicion.

y no pensamos en el futuro de nuestros hijos se algun dia van a llegar a grandes o van a morir en el intento.

pienselon el reciclaje es tu mejos eleccion.

tipos energia

1. deserrollar un ensayo acerca de los diferentes tipos de energia vistos en clase 

 

Energía eólica

Parque eólico. Hamburgo, Alemania.

Parque eólico de Sierra de los Caracoles, Uruguay.

Energía eólica es la energía obtenida del viento, es decir, la energía cinética generada por efecto de las corrientes de aire, y que es transformada en otras formas útiles para las actividades humanas.

El término eólico viene del latín Aeolicus, perteneciente o relativo a Eolo, dios de los vientos en la mitología griega. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas.

En la actualidad, la energía eólica es utilizada principalmente para producir energía eléctrica mediante aerogeneradores. A finales de 2007, la capacidad mundial de los generadores eólicos fue de 94.1 gigavatios.[1] En 2009 la eólica generó alrededor del 2% del consumo de electricidad mundial, cifra equivalente a la demanda total de electricidad en Italia, la séptima economía mayor mundial.[2] En España la energía eólica produjo un 11% del consumo eléctrico en 2008,[3] [4] y un 13.8% en 2009.[5]

La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar termoeléctricas a base de combustibles fósiles, lo que la convierte en un tipo de energía verde. Sin embargo, el principal inconveniente es su intermitencia.

Energía solar

De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

Panel solar.

Concentradores parabólicos que recogen la energía solar en Almería,España.

La energía solar es la energía obtenida mediante la captación de la luz y el calor emitidos por el Sol.

La radiación solar que alcanza la Tierra puede aprovecharse por medio del calor que produce a través de la absorción de la radiación, por ejemplo en dispositivos ópticos o de otro tipo. Es una de las llamadas energías renovables, particularmente del grupo no contaminante, conocido como energía limpia o energía verde. Si bien, al final de su vida útil, los paneles fotovoltaicos pueden suponer un residuo contaminante difícilmente reciclable al día de hoy.

La potencia de la radiación varía según el momento del día, las condiciones atmosféricas que la amortiguan y la latitud. Se puede asumir que en buenas condiciones de irradiación el valor es de aproximadamente 1000 W/ en la superficie terrestre. A esta potencia se la conoce como irradiancia.

La radiación es aprovechable en sus componentes directa y difusa, o en la suma de ambas. La radiación directa es la que llega directamente del foco solar, sin reflexiones o refracciones intermedias. La difusa es la emitida por la bóveda celeste diurna gracias a los múltiples fenómenos de reflexión y refracción solar en la atmósfera, en las nubes y el resto de elementos atmosféricos y terrestres. La radiación directa puede reflejarse y concentrarse para su utilización, mientras que no es posible concentrar la luz difusa que proviene de todas las direcciones.

La irradiancia directa normal (o perpendicular a los rayos solares) fuera de la atmósfera, recibe el nombre de constante solar y tiene un valor medio de 1354 W/ (que corresponde a un valor máximo en el perihelio de 1395 W/ y un valor mínimo en el afelio de 1308 W/).

Según informes de Greenpeace, la energía solar fotovoltaica podría suministrar electricidad a dos tercios de la población mundial en 2030.[1]

Energía potencial

De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

Los carros de una montaña rusa alcanzan su máxima energía potencial gravitacional en la parte más alta del recorrido. Al descender, ésta es convertida en energía cinética, la que llega a ser máxima en el fondo de la trayectoria (y la energía potencial mínima). Luego, al volver a elevarse debido a la inercia del movimiento, el traspaso de energías se invierte. Si se asume una fricción insignificante, la energía total del sistema permanece constante.

En un sistema físico, la energía potencial es energía que mide la capacidad que tiene dicho sistema para realizar trabajo en función exclusivamente de su posición o configuración. Puede pensarse como la energía almacenada en el sistema, o como una medida del trabajo que un sistema puede entregar. Suele abreviarse con la letra o .

La energía potencial puede presentarse como energía potencial gravitatoria, energía potencial electrostática, y energía potencial elástica.

Más rigurosamente, la energía potencial es una magnitud escalar asociada a un campo de fuerzas (o como en elasticidad un campo tensorial de tensiones). Cuando la energía potencial está asociada a un campo de fuerzas, la diferencia entre los valores del campo en dos puntos A y B es igual al trabajo realizado por la fuerza para cualquier recorrido entre B y A

Energía eléctrica

De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

Circuitos eléctricos

Electricidad

 

 

[mostrar]Leyes y teoremas fundamentales

Ley de Ohm · Ley de Joule · Leyes de Kirchhoff  · Thévenin  · Norton  · Kennelly  · Principio de Millman

 

 

Esta caja: ver • discusión • editar

Consumo de energía eléctrica por país, en millones de kWh.

Se denomina energía eléctrica a la forma de energía la cual resulta de la existencia de una diferencia de potencial entre dos puntos, lo que permite establecer una corriente eléctrica entre ambos —cuando se les coloca en contacto por medio de un conductor eléctrico—para obtener trabajo. La energía eléctrica puede transformarse en muchas otras formas de energía, tales como la energía luminosa o luz, la energía mecánica y la energía térmica.

Su uso es una de las bases de la tecnología utilizada por el ser humano en la actualidad.

La energía eléctrica se manifiesta como corriente eléctrica, es decir, como el movimiento de cargas eléctricas negativas, o electrones, a través de un cable conductor metálico como consecuencia de la diferencia de potencial que un generador esté aplicando en sus extremos.

Cada vez que se acciona un interruptor, se cierra un circuito eléctrico y se genera el movimiento de electrones a través del cable conductor. Las cargas que se desplazan forman parte de los átomos de— que se desea utilizar, mediante las correspondientes transformaciones; por ejemplo, cuando la energía eléctrica llega a una enceradora, se convierte en energía mecánica, calórica y en algunos casos luminosa, gracias al motor eléctrico y a las distintas piezas mecánicas del aparato.

Tiene una utilidad directa para el ser humano, salvo en aplicaciones muy singulares, como pudiera ser el uso de corrientes en medicina, resultando en cambio normalmente desagradable e incluso peligrosa, según las circunstancias. Sin embargo es una de las más utilizadas, una vez aplicada a procesos y aparatos de la más diversa naturaleza, debido fundamentalmente a su limpieza y a la facilidad con la que se le genera, transporta y convierte en otras formas de energía. Para contrarrestar todas estas virtudes hay que reseñar la dificultad que presenta su almacenamiento directo en los aparatos llamados acumuladores.

La generación de energía eléctrica se lleva a cabo mediante técnicas muy diferentes. Las que suministran las mayores cantidades y potencias de electricidad aprovechan un movimiento rotatorio para generar corriente continua en un dinamo o corriente alterna en un alternador. El movimiento rotatorio resulta a su vez de una fuente de energía mecánica directa, como puede ser la corriente de un salto de agua, la producida por el viento, o a través de un ciclo termodinámico. En este último caso se calienta un fluido, al que se hace recorrer un circuito en el que mueve un motor o una turbina. El calor de este proceso se obtiene mediante la quema de combustibles fósiles, reacciones nucleares y otros procesos.

La generación de energía eléctrica es una actividad humana básica, ya que está directamente relacionada con los requerimientos actuales del hombre. Todas la formas de utilización de las fuentes de energía, tanto las habituales como las denominadas alternativas o no convencionales, agreden en mayor o menor medida el ambiente, siendo de todos modos la energía eléctrica una de las que causan menor impacto.

Artículo principal: Generación de energía eléctrica

La energía eléctrica se crea por el movimiento de los electrones, para que este movimiento sea continuo, tenemos que suministrar electrones por el extremo positivo para dejar que se escapen o salgan por el negativo; para poder conseguir esto, necesitamos mantener un campo eléctrico en el interior del conductor (metal, etc.).Estos aparatos construidos con el fin de crear electricidad se llaman generadores eléctricos. Claro que hay diferentes formas de crearla, eólicamente, hidráulicamente, de forma geotérmica y muchas más

Energía cinética

De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

Para otros usos de este término, véase Cinética.

Los carros de una montaña rusa alcanzan su máxima energía cinética cuando están en el fondo de su trayectoria. Cuando comienzan a elevarse, la energía cinética comienza a ser convertida a energía potencial gravitacional, pero, si se asume una fricción insignificante y otros factores de retardo, la cantidad total de energía en el sistema sigue siendo constante.

La energía cinética de un cuerpo es una energía que surge en el fenómeno del movimiento. Está definida como el trabajo necesario para acelerar un cuerpo de una masa dada desde el reposo hasta la velocidad que posee. Una vez conseguida esta energía durante la aceleración, el cuerpo mantiene su energía cinética salvo que cambie su rapidez o su masa. Para que el cuerpo regrese a su estado de reposo se requiere un trabajo negativo de la misma magnitud que su energía cinética.

La energía química es una manifestación más de la energía. En concreto,
és uno de los aspectos de la energía interna de un cuerpo y, aunque se en-
cuentra siempre en la materia, sólo se nos muestra cuando se produce una
alteración íntima de ésta.

     En la ctualidad, la energía química és la que mueve los automóviles, los
buques y los aviones y, en general, millones de máquinas. Tanto la combus-
tión del carbón, de la leña o del petróleo en las máquinas de vapor como la
de los derivados del petróleo en el estrecho y reducido espacio de los cilin-
dros de un motor de explosión, constituyen reacciones químicas.

      

          

     El carbón y la gasolina gasificada se combinan con el oxígeno del aire, re-
accionan con él y se transforman suave y lentamente, en el caso del carbón,
o instantáne y rapidamente, en el caso de la gasolina dentro de los cilindros
de los motores. Las mezclas gaseosas inflamadas se dilatan considerable y
rapidamente y en un instante comunican a los pistones del motor su energía
de traslación, su fuerza viva o de movimiento.

     Si se rodeasen el carbón o la leña, la gasolina y el petróleo de una atmós-
fera de gas inerte, por ejemplo nitrógeno gaseoso, ni los primeros arderían
ni los últimos explotarian en los cilindros. El nitrógeno no reacciona con
aquellos cuerpos y las mezclas de gasolina y nitrógeno ni arden ni explotan.

     Finalmente, hay que mencionar la más reciente y espectacular aplicación
de la energía química para lograr lo que durante muchos siglos constituyó su
sueño: el viaje de ida y vuelta al espacio ex
terior y a la Luna, asi como la co-
locación de distintos tipos de satélites artificiales en determinadas órbitas.

2. seleccione uno o mostrarlo en forma practica

la energia nuclear

La energía nuclear es la energía que se libera espontánea o artificialmente en las reacciones nucleares. Sin embargo, este término engloba otro significado, el aprovechamiento de dicha energía para otros fines como, por ejemplo, la obtención de energía eléctrica, térmica y mecánica a partir de reacciones nucleares, y su aplicación, bien sea con fines pacíficos o bélicos.[1] Así, es común referirse a la energía nuclear no solo como el resultado de una reacción sino como un concepto más amplio que incluye los conocimientos y técnicas que permiten la utilización de esta energía por parte del ser humano.

Estas reacciones se dan en los núcleos de algunos isótopos de ciertos elementos químicos, siendo la más conocida la fisión del uranio-235 (235U), con la que funcionan los reactores nucleares, y la más habitual en la naturaleza, en el interior de las estrellas, la fusión del par deuterio-tritio (2H-3H). Sin embargo, para producir este tipo de energía aprovechando reacciones nucleares pueden ser utilizados muchos otros isótopos de varios elementos químicos, como el torio-232, el plutonio-239, el estroncio-90 o el polonio-210 (232Th, 239Pu, 90Sr, 210Po; respectivamente).

Existen varias disciplinas y técnicas que usan de base la energía nuclear y van desde la generación de electricidad en las centrales nucleares hasta las técnicas de análisis de datación arqueológica (arqueometría nuclear), la medicina nuclear usada en los hospitales, etc.

Los dos sistemas más investigados y trabajados para la obtención de energía aprovechable a partir de la energía nuclear de forma masiva son la fisión nuclear y la fusión nuclear. La energía nuclear puede transformarse de forma descontrolada, dando lugar al armamento nuclear; o controlada en reactores nucleares en los que se produce energía eléctrica, energía mecánica o energía térmica. Tanto los materiales usados como el diseño de las instalaciones son completamente diferentes en cada caso.

Otra técnica, empleada principalmente en pilas de mucha duración para sistemas que requieren poco consumo eléctrico, es la utilización de generadores termoeléctricos de radioisótopos (GTR, o RTG en inglés), en los que se aprovechan los distintos modos de desintegración para generar electricidad en sistemas de termopares a partir del calor transferido por una fuente radiactiva.

La energía desprendida en esos procesos nucleares suele aparecer en forma de partículas subatómicas en movimiento. Esas partículas, al frenarse en la materia que las rodea, producen energía térmica. Esta energía térmica se transforma en energía mecánica utilizando motores de combustión externa, como las turbinas de vapor. Dicha energía mecánica puede ser empleada en el transporte, como por ejemplo en los buques nucleares; o para la generación de energía eléctrica en centrales nucleares.

La principal característica de este tipo de energía es la alta calidad de la energía que puede producirse por unidad de masa de material utilizado en comparación con cualquier otro tipo de energía conocida por el ser humano, pero sorprende la poca eficiencia del proceso, ya que se desaprovecha entre un 86 y 92% de la energía que se libera.[2]

     

 

3. detallar su funcion, elaboracion y herramientas de fabricacion

 

La energía nuclear es la energía que se libera espontánea o artificialmente en las reacciones nucleares. Sin embargo, este término engloba otro significado, el aprovechamiento de dicha energía para otros fines como, por ejemplo, la obtención de energía eléctrica, térmica y mecánica a partir de reacciones nucleares, y su aplicación, bien sea con fines pacíficos o bélicos.[1] Así, es común referirse a la energía nuclear no solo como el resultado de una reacción sino como un concepto más amplio que incluye los conocimientos y técnicas que permiten la utilización de esta energía por parte del ser humano.

Estas reacciones se dan en los núcleos de algunos isótopos de ciertos elementos químicos, siendo la más conocida la fisión del uranio-235 (235U), con la que funcionan los reactores nucleares, y la más habitual en la naturaleza, en el interior de las estrellas, la fusión del par deuterio-tritio (2H-3H). Sin embargo, para producir este tipo de energía aprovechando reacciones nucleares pueden ser utilizados muchos otros isótopos de varios elementos químicos, como el torio-232, el plutonio-239, el estroncio-90 o el polonio-210 (232Th, 239Pu, 90Sr, 210Po; respectivamente).

Armas nucleares

Un arma es todo instrumento, medio o máquina que se destina a atacar o a defenderse.[11] Según tal definición, existen dos categorías de armas nucleares:

  1. Aquellas que utilizan la energía nuclear de forma directa para el ataque o la defensa, es decir, los explosivos que usan la fisión o la fusión.
  2. Aquellas que utilizan la energía nuclear para su propulsión, pudiendo a su vez utilizar o no munición que utilice la energía nuclear para su detonación. En esta categoría se pueden citar los buques de guerra de propulsión nuclear (cruceros, portaaviones, submarinos, bombarderos, etc.).

Véanse también: Arma nuclear y propulsión nuclear

[editar] Bomba atómica

Artículo principal: Bomba atómica

Existen dos formas básicas de utilizar la energía nuclear desprendida por reacciones en cadena descontroladas de forma explosiva: la fisión y la fusión.

Bomba de fisión

Métodos utilizados para crear una masa crítica del elemento físil empleado en la bomba de fisión.

El 16 de julio de 1945 se produjo la primera explosión de una bomba de fisión creada por el ser humano: La Prueba Trinity.

Existen dos tipos básicos de bombas de fisión: utilizando uranio altamente enriquecido (enriquecimiento superior al 90% en 235U) o utilizando plutonio. Ambos tipos se fundamentan en una reacción de fisión en cadena descontrolada y solo se han empleado en un ataque real en Hiroshima y Nagasaki, al final de la Segunda Guerra Mundial.

Para que este tipo de bombas funcionen es necesario utilizar una cantidad del elemento utilizado superior a la Masa crítica. Suponiendo una riqueza en el elemento del 100%, eso suponen 52 kg de 235U o 10 kg de 239Pu. Para su funcionamiento se crean 2 o más partes subcríticas que se unen mediante un explosivo químico convencional de forma que se supere la masa crítica.

Los dos problemas básicos que se debieron resolver para crear este tipo de bombas fueron:

  • Generar suficiente cantidad del elemento físil a utilizar, ya sea uranio enriquecido o plutonio puro.
  • Alcanzar un diseño en el que el material utilizado en la bomba no sea destruido por la primera explosión antes de alcanzar la criticidad.

El rango de potencia de estas bombas se sitúa entre aproximadamente el equivalente a una tonelada de TNT hasta los 500.000 kilotones.

Bomba de fusión

Diseño básico Teller-Ullam

Tras el primer ensayo exitoso de una bomba de fisión por la Unión Soviética en 1949 se desarrolló una segunda generación de bombas nucleares que utilizaban la fusión. Se la llamó bomba termonuclear, bomba H o bomba de hidrógeno. Este tipo de bomba no se ha utilizado nunca contra ningún objetivo real. El llamado diseño Teller-Ullam (o secreto de la bomba H) separa ambas explosiones en dos fases.

Este tipo de bombas pueden ser miles de veces más potentes que las de fisión. En teoría no existe un límite a la potencia de estas bombas, siendo la de mayor potencia explotada la bomba del Zar, de una potencia superior a los 50 megatones.

Las bombas de hidrógeno utilizan una bomba primaria de fisión que genera las condiciones de presión y temperatura necesarias para comenzar la reacción de fusión de núcleos de hidrógeno. Debido a que los únicos productos radiactivos que generan estas bombas son los producidos en la explosión primaria de fisión, por lo que a veces se le ha llamado bomba nuclear limpia. El extremo de esta característica son las llamadas bombas de neutrones o bomba N, que minimizan la bomba de fisión primaria, logrando un mínimo de productos de fisión. Estas bombas además se diseñaron de tal modo que la mayor cantidad de energía liberada sea en forma de neutrones, con lo que su potencia explosiva es la décima parte que una bomba de fisión. Fueron concebidas como armas anti-tanque, ya que al penetrar los neutrones en el interior de los mismos, matan a sus ocupantes por las radiaciones.

Véase también: Proceso Teller-Ulam

[editar] Buques militares de propulsión nuclear

Durante la segunda guerra mundial se comprobó que el submarino podía ser un arma decisiva, pero poseía un grave problema a resolver: su necesidad de emerger tras cortos períodos para obtener aire para la combustión del diésel en que se basaban sus motores (la invención del snorkel mejoró algo el problema, pero no lo solucionó). El Almirante Hyman G. Rickover fue el primero que pensó que la energía nuclear podría ayudar con este problema.

USS Enterprise (CVN-65) junto con otros buques de apoyo de propulsión nuclear (un crucero y un destructor) en el Mediterráneo. La tripulación forma en su cubierta la famosa fórmula de Einstein E=mc² sobre la equivalencia masa-energía.

Los desarrollos de los reactores nucleares permitieron un nuevo tipo de motor con ventajas fundamentales:

  1. No precisa aire para el funcionamiento del motor, ya que no se basa en la combustión.
  2. Una pequeña masa de combustible nuclear permite una autonomía de varios meses (años incluso) sin repostar. Por ejemplo, los submarinos de Estados Unidos no necesitan repostar durante toda su vida útil.
  3. Un empuje que ningún otro motor puede equiparar, con lo que pudieron construirse submarinos mucho más grandes que los existentes hasta el momento. El mayor submarino construido hasta la fecha son los de la clase Akula rusos (desplazamiento de 48 mil toneladas, 175 m de longitud).

Estas ventajas condujeron a buques que alcanzan velocidades de más de 25 nudos, que pueden permanecer semanas en inmersión profunda y que además pueden almacenar enormes cantidades de munición (nuclear o convencional) en sus bodegas. De hecho las armadas de Estados Unidos, Francia y el Reino Unido sólo poseen submarinos que utilizan este sistema de propulsión.

En los submarinos se han utilizado reactores de agua a presión, de agua en ebullición o de sales fundidas. Para conseguir reducir el peso del combustible en estos reactores se usa uranio con altos grados de enriquecimiento (del 30 al 40% en los rusos o del 96% en los estadounidenses). Estos reactores presentan la ventaja de que no es necesario (aunque sí es posible) convertir el vapor generado por el calor en electricidad, sino que puede utilizarse de forma directa sobre una turbina que proporciona el movimiento a las hélices que impulsan el buque, mejorando notablemente el rendimiento.

Se han construido una gran variedad de buques militares que usan motores nucleares y que, en algunos casos, portan a su vez misiles de medio o largo alcance con cabezas nucleares:

Estados Unidos, Gran Bretaña, Rusia, China y Francia poseen buques de propulsión nuclear.

Véase también: Propulsión nuclear marina

[editar] Aviones militares de propulsión nuclear

Tanto Estados Unidos como la Unión Soviética se plantearon la creación de una flota de bombarderos de propulsión nuclear. De este modo se pretendía mantenerlos cargados con cabezas nucleares y volando de forma permanente cerca de los objetivos prefijados. Con el desarrollo del Misil balístico intercontinental (ICBM) a finales de los 50, más rápidos y baratos, sin necesidad de pilotos y prácticamente invulnerables, se abandonaron todos los proyectos.

Los proyectos experimentales fueron:

  • Convair X-6. Proyecto estadounidense a partir de un bombardero B-36. Llegó a tener un prototipo (el NB-36H) que realizó 47 vuelos de prueba de 1955 a 1957, año en el que se abandonó el proyecto. Se utilizó un reactor de fisión de 3 MW refrigerado con aire que solo entró en funcionamiento para las pruebas de los blindajes, nunca propulsando el avión.
  • Tupolev Tu-119. Proyecto soviético a partir de un bombardero Tupolev Tu-95. Tampoco pasó de la etapa de pruebas.

Véanse también: Guerra Fría#Carrera Armamentista, Estrategia de las armas nucleares, Escudo Antimisiles y Tratado de No Proliferación Nuclear

[editar] Propulsión nuclear civil

La energía nuclear se utiliza desde los años 50 como sistema para dar empuje (propulsar) distintos sistemas, desde los submarinos (el primero que utilizó la energía nuclear), hasta naves espaciales en desarrollo en este momento.

Véase también: Propulsión nuclear

[editar] Buques nucleares civiles

El NS Savannah, el primer buque nuclear de mercancías y pasajeros jamás construido, fue botado en 1962 y desguazado 8 años más tarde por su inviabilidad económica.

Tras el desarrollo de los buques de propulsión nuclear de uso militar se hizo pronto patente que existían ciertas situaciones en las que sus características podían ser trasladadas a la navegación civil.

Se han construido cargueros y rompehielos que usan reactores nucleares como motor.

El primer buque nuclear de carga y pasajeros fue el NS Savannah, botado en 1962. Solo se construyeron otros 3 buques de carga y pasajeros: El Mutsu japonés, el Otto Hahn alemán y el Sevmorput ruso. El Sevmorput (acrónimo de 'Severnii Morskoi Put'), botado en 1988 y dotado con un reactor nuclear tipo KLT-40 de 135 MW, sigue en activo hoy en día transitando la ruta del mar del norte.

Rusia ha construido 9 rompehielos nucleares desde 1959 hasta 2007, realizando recorridos turísticos, viajando hacia el polo norte, desde 1989. El coste de uno de sus viajes es de 25.000 dólares por un viaje de 3 semanas.

Véase también: Propulsión nuclear marina

[editar] Propulsión aeroespacial

Artículo principal: propulsión nuclear aeroespacial

Recreación artística del Proyecto Orión.

Aunque existen varias opciones que pueden utilizar la energía nuclear para propulsar cohetes espaciales, solo algunas han alcanzado niveles de diseño avanzados.

El cohete termonuclear, por ejemplo, utiliza hidrógeno recalentado en un reactor nuclear de alta temperatura, consiguiendo empujes al menos dos veces superiores a los cohetes químicos. Este tipo de cohetes se probaron por primera vez en 1959 (el Kiwi 1), dentro del Proyecto Nerva, cancelado en 1972. En 1990 se relanzó el proyecto bajo las siglas SNTP (Space Nuclear Thermal Propulsión) dentro del proyecto para un viaje tripulado a Marte en 2019. En 2003 comenzó con el nombre de Proyecto Prometeo. Otra de las posibilidades contempladas es el uso de un reactor nuclear que alimente a un propulsor iónico (el Nuclear Electric Xenon Ion System o 'NEXIS').

El Proyecto Orión[12] fue un proyecto ideado por Stanisław Ulam en 1947, que comenzó en 1958 en la empresa General Atomics. Su propósito era la realización de viajes interplanetarios de forma barata a una velocidad de un 10% de c. Para ello utilizaba un método denominado propulsión nuclear pulsada (External Pulsed Plasma Propulsión es su denominación oficial en inglés). El proyecto fue abandonado en 1963, pero el mismo diseño se ha utilizado como base en el Proyecto Dédalo[13] británico con motor de fusión, el Proyecto Longshot[14] americano con motor de fisión acoplado a un motor de fusión inercial o el Proyecto Medusa.

También se ha propuesto el uso de RTG como fuente para un cohete de radioisótopos.[15]

[editar] Automóvil nuclear

La única propuesta conocida es el diseño conceptual lanzado por Ford en 1958: el Ford Nucleon.[16] Nunca fue construido un modelo operacional. En su diseño se proponía el uso de un pequeño reactor de fisión que podía proporcionar una autonomía de más de 8.000 km. Un prototipo del coche se mantiene en el museo Henry Ford.

Una opción, incluida en las alternativas al petróleo, es el uso del hidrógeno en células de combustible como combustible para vehículos de hidrógeno. Se está investigando en este caso el uso de la energía nuclear para la generación del hidrógeno necesario mediante reacciones termoquímicas o de electrólisis con vapor a alta temperatura.[17]

 4. destificar la eleccion anterior con tus propias palabras

 ya que con esta se pueden realizar muchas cosas tambien hace daño al mundo con sus bombas nucleares etc

5.  graficar tu eleccion anterior con tus propias palabras


No se dispone de una resolución más alta.
TrigaReactorCore.jpeg‎ (550 × 405 píxeles; tamaño de archivo: 27 KB; tipo MIME: image/jpeg)

en esta imagen se puede apreciar la radiacion cherenkov, en azul

6. revision del trabajo en el blogs y fisicamente

 

Procesos de texto

Actividad:

1-Determinar los prosesos de texto en la tecnologia y tomar tres como ejemplo.

Los procesadores de textos nos brindan una amplia gama de funcionalidades, ya sea tipográficas, idiomáticas u organizativas, con algunas variantes según el programa de que se disponga. Como regla general, todos pueden trabajar con distintos tipos y tamaños de letra, formato de párrafo y efectos artísticos; además de brindar la posibilidad de intercalar o superponer imágenes u otros objetos gráficos dentro del texto.

Como ocurre con la mayoría de las herramientas informáticas, los trabajos realizados en un procesador de textos pueden ser guardados en forma de archivos, usualmente llamados documentos, así como impresos a través de diferentes medios.

Los procesadores de texto también incorporan desde hace algunos años correctores de ortografía y gramática, así como diccionarios multilingües y de sinónimos que facilitan en gran medida la labor de redacción.

Ejemplos:

  • Edit Pad

Un reemplazo para el Bloc de Notas de Windows con soporte de múltiples ficheros, drag & drop, y más. Cambia entre los ficheros abiertos de forma fácil a través de pestañas. Este programa incorpora todas las funciones habituales en este tipo de programas: edición de ventanas múltiples, tamaño ilimitado de ficheros, hacer que la ventana esté encima de todas las demás, conversiones automáticas entre sistemas, etc.

  • UltraEdit 32

Es más que un reemplazo del Bloc de Notas, es un editor de textos completísimo. Soporta múltiples ficheros al mismo tiempo y de tamaño ilimitado, drag and drop, edición hexadecimal, configuración de colores según la sintaxis para programadores (ya lleva HTML, Java, C/C++, VB por defecto), edición de columnas, ordenación, y una barra de herramientas configurable. Puedes conseguir el diccionario castellano para usar con UltraEdit en la Web del autor. La nueva versión mejora el soporte de FTP y de macros, y corrige algunos "bugs". Caduca a los 45 días.

  • Textpad

El mejor editor de textos del mercado. Con él que podrás abrir múltiples ficheros a la vez, hacer una búsqueda/reemplazo en múltiples ficheros, y tener todas las opciones de un buen editor sin ocupar casi memoria y con carga rápida. Un programa diseñado para reemplazar al Bloc de Notas de Windows y darle al usuario todo el poder y funcionalidad necesarios para satisfacer los requerimientos de edición de texto más elevados. Soporta ficheros de texto grandes, limitados tan sólo por la memoria virtual de tu sistema.

2-Necesito conocimientos previos a la informatica para aprender a manejar un procesador de texto.

Si todos lo necesitamos porque hay muchas cosas que no sabemos y no tenemos conocimiento mas altos solo los basicos.

3-Describir y numerar diez teclas rapidas de microsoft word

4-Describa los siguientes enunciados: chat y irc webchat: hacker, craker

Eempresa

MI EMPRESA:

 

Misión

Satisfacer las necesidades del cliente produciendo, comercializando y   fabricando tendencias que los lleven a cumplir todas las necesidades con un buen servicio de calidad. Con un personal capacitado para atender y dar soluciones que demuestren el compromiso y el trabajo en equipo.

Visión

Ser la organización líder, diseñando y aplicando las mejores tendencias, en las áreas de diseño, producción y fabricación, manteniendo un alto nivel de permanencia, para ser identificados como símbolo de excelencia.

A QUE SE DEDICA

Diseño, creación, producción, venta y comercialización de sus productos en los diferentes puntos de venta y por todo el mundo.      

    TELEFONO: 2985471

CEL: 3156993202 – 3115228741

               DIRECCION: CLL 20 # 70ª -66       LOCAL: 115 (PRINCIPÀL)

DIRECCION FABRICA: AV 108 # 25-63

CORREO:

  1. VANE_14_502@HOTMAIL.COM

MARIPOSA-1994@HOTMAIL.ES

Hipervinculo

Hipervinculo

ACTIVIDAD

 

  1. Que es un hipervinculo y como funciona???

Un hipervínculo es un enlace, normalmente entre dos páginas web de un mismo sitio, pero un enlace también puede apuntar a una página de otro sitio web, a un fichero, a una imagen, etc. Para navegar al destino al que apunta el enlace, hemos de hacer clic sobre él. También se conocen como hiperenlaces, enlaces o links.

Normalmente el destino se puede saber mirando la barra de estado del navegador cuando el ratón esté sobre el hipervínculo.

Dependiendo de cual sea el destino , hacer clic en un hipervínculo puede hacer que ocurran varias cosas. Si el destino es otra página web, el navegador la cargará y la mostrará, pero si el destino es un documento de Word, el navegador nos dará la posibilidad de abrir una sesión de Word para visualizarlo o de guardar el archivo.

Por lo tanto, podemos usar los hipervínculos para conducir a los visitantes de nuestro sitio web por donde queramos. Además, si queremos que se pongan en contacto con nosotros, nada mejor que ofrecerles un hipervínculo a nuestro correo electrónico.

Entrevista

a yesica la secretaria academica:

Donde estudio???

en cemped.

Como ha sido su trabajo en cemped???

muy bueno ha sido interesante trabajar en esee cargo.